TGI-EB: A New Framework for Edge Bundling Integrating Topology, Geometry and Importance

  • Quan Nguyen
  • Seok-Hee Hong
  • Peter Eades
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7034)


Edge bundling methods became popular for visualising large dense networks; however, most of previous work mainly relies on geometry to define compatibility between the edges.

In this paper, we present a new framework for edge bundling, which tightly integrates topology, geometry and importance. In particular, we introduce new edge compatibility measures, namely importance compatibility and topology compatibility. More specifically, we present four variations of force directed edge bundling method based on the framework: Centrality-based bundling, Radial bundling, Topology-based bundling, and Orthogonal bundling.

Our experimental results with social networks, biological networks, geographic networks and clustered graphs indicate that our new framework can be very useful to highlight the most important topological skeletal structures of the input networks.


  1. 1.
  2. 2.
    Ahmed, A., Dwyer, T., Forster, M., Fu, X., Ho, J., Hong, S.-H., Koschützki, D., Murray, C., Nikolov, N.S., Taib, R., Tarassov, A., Xu, K.: GEOMI: Geometry for Maximum Insight. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 468–479. Springer, Heidelberg (2006), CrossRefGoogle Scholar
  3. 3.
    Alvarez, H.J.I., Dall, A.L., Barrat, A., Vespignani, A.: Large scale networks fingerprinting and visualization using the k-core decomposition. In: Advances in Neural Information Processing Systems, vol. 18, p. 41 (2006)Google Scholar
  4. 4.
    Balzer, M., Deussen, O.: Level-of-detail visualization of clustered graph layouts. In: APVIS, pp. 133–140 (2007)Google Scholar
  5. 5.
    Brandes, U., Erlebach, T.: Network analysis: methodological foundations. Springer, Heidelberg (2005)CrossRefzbMATHGoogle Scholar
  6. 6.
    Brandes, U., Wagner, D.: Using Graph Layout to Visualize Train Interconnection Data. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 44–56. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Cornelissen, B., Zaidman, A., Holten, D., Moonen, L., van Deursen, A., van Wijk, J.J.: Execution trace analysis through massive sequence and circular bundle views. Journal of Systems and Software 81(12), 2252–2268 (2008)CrossRefGoogle Scholar
  8. 8.
    Cui, W., Zhou, H., Qu, H., Wong, P.C., Li, X.: Geometry-based edge clustering for graph visualization. IEEE Transactions on Visualization and Computer Graphics, 1277–1284 (2008)Google Scholar
  9. 9.
    Finkel, B., Tamassia, R.: Curvilinear Graph Drawing using the Force-Directed Method. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 448–453. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Gansner, E., Hu, Y., North, S., Scheidegger, C.: Multilevel agglomerative edge bundling for visualizing large graphs. In: IEEE PacificVis, pp. 187–194 (2011)Google Scholar
  11. 11.
    Gansner, E., Koren, Y.: Improved Circular Layouts. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 386–398. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Ho, J., Hong, S.-H.: Drawing Clustered Graphs in Three Dimensions. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 492–502. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Holten, D.: Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data. IEEE Transactions on Visualization and Computer Graphics, 741–748 (2006)Google Scholar
  14. 14.
    Holten, D., van Wijk, J.J.: Force-directed edge bundling for graph visualization. Computer Graphics Forum 28(3), 983–990 (2009)CrossRefGoogle Scholar
  15. 15.
    Lambert, A., Bourqui, R., Auber, D.: Winding roads: Routing edges into bundles. Computer Graphics Forum 29, 853–862 (2010)CrossRefGoogle Scholar
  16. 16.
    Pupyrev, S., Nachmanson, L., Kaufmann, M.: Improving Layered Graph Layouts with Edge Bundling. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 329–340. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Strzodka, R., Telea, A.: Generalized distance transforms and skeletons in graphics hardware. In: VisSym, pp. 221–230 (2004)Google Scholar
  18. 18.
    Sugiyama, K., Misue, K.: Graph drawing by the magnetic spring model. Journal of Visual Languages and Computing 6(3), 217–231 (1995)CrossRefGoogle Scholar
  19. 19.
    Telea, A., Ersoy, O.: Image-Based Edge Bundles: Simplified Visualization of Large Graphs. Computer Graphics Forum 29, 843–852 (2010)CrossRefGoogle Scholar
  20. 20.
    Wasserman, S., Faust, K.: Social network analysis: Methods and applications, 1st edn. Cambridge University Press (1994)Google Scholar
  21. 21.
    Zhou, H., Yuan, X., Cui, W., Qu, H., Chen, B.: Energy-based hierarchical edge clustering of graphs. In: IEEE PacificVis, pp. 55–61 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Quan Nguyen
    • 1
    • 2
  • Seok-Hee Hong
    • 1
    • 2
  • Peter Eades
    • 1
    • 2
  1. 1.School of Information TechnologiesUniversity of SydneyAustralia
  2. 2.Capital Markets CRCSydneyAustralia

Personalised recommendations