Advances in the Planarization Method: Effective Multiple Edge Insertions

  • Markus Chimani
  • Carsten Gutwenger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7034)

Abstract

The planarization method is the strongest known method to heuristically find good solutions to the general crossing number problem in graphs: starting from a planar subgraph, one iteratively inserts edges, representing crossings via dummy nodes. In the recent years, several improvements both from the practical and the theoretical point of view have been made. We review these advances and conduct an extensive study of the algorithms’ practical implications. Thereby, we present the first implementation of an approximation algorithm for the crossing number problem of general graphs, and compare the obtained results with known exact crossing number solutions.

References

  1. 1.
    Batini, C., Talamo, M., Tamassia, R.: Computer aided layout of entity relationship diagrams. J. Syst. Software 4, 163–173 (1984)CrossRefGoogle Scholar
  2. 2.
    Cabello, S., Mohar, B.: Crossing and Weighted Crossing Number of Near Planar Graphs. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 38–49. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Chimani, M.: Computing Crossing Numbers. PhD thesis, TU Dortmund, Germany (2008)Google Scholar
  4. 4.
    Chimani, M., Gutwenger, C., Mutzel, P., Wolf, C.: Inserting a vertex into a planar graph. In: Mathiru, C. (ed.) Proc. SODA 2009, pp. 375–383 (2009)Google Scholar
  5. 5.
    Chimani, M., Hliněný, P.: A tighter Insertion-Based Approximation of the Crossing Number. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 122–134. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Chimani, M., Hliněný, P., Mutzel, P.: Vertex insertion approximates the crossing number for apex. Europ. J. Comb. (to appear, 2011)Google Scholar
  7. 7.
    Chimani, M., Mutzel, P., Bomze, I.: A New Approach to Exact Crossing Minimization. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 284–296. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Chuzhoy, J., Makarychev, Y., Sidiropoulos, A.: On graph crossing number and edge planarization. In: Proc. SODA 2011, pp. 1050–1069. ACM Press (2011)Google Scholar
  9. 9.
    Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Tassinari, E., Vargiu, F.: An experimental comparison of four graph drawing algorithms. Computational Geometry 7(5-6), 303–326 (1997)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM Journal on Computing 25, 956–997 (1996)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Gutwenger, C.: Application of SPQR-Trees in the Planarization Approach for Drawing Graphs. PhD thesis, TU Dortmund, Germany (2010)Google Scholar
  12. 12.
    Gutwenger, C., Mutzel, P.: A Linear Time Implementation of SPQR Trees. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Gutwenger, C., Mutzel, P.: An Experimental Study of Crossing Minimization Heuristics. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 13–24. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Gutwenger, C., Mutzel, P., Weiskircher, R.: Inserting an edge into a planar graph. Algorithmica 41(4), 289–308 (2005)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Hliněný, P., Salazar, G.: On the Crossing Number of Almost Planar Graphs. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 162–173. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM Journal on Computing 2(3), 135–158 (1973)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Jünger, M., Leipert, S., Mutzel, P.: A note on computing a maximal planar subgraph using PQ-trees. IEEE Trans. Comp.-Aided Design 17(7), 609–612 (1998)CrossRefGoogle Scholar
  18. 18.
    Ziegler, T.: Crossing Minimization in Automatic Graph Drawing. PhD thesis, Saarland University, Germany (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Markus Chimani
    • 1
  • Carsten Gutwenger
    • 2
  1. 1.Inst. of Computer ScienceFSUJenaGermany
  2. 2.Dep. of Computer ScienceTUDortmundGermany

Personalised recommendations