Computing with Pavlovian Populations

  • Olivier Bournez
  • Jérémie Chalopin
  • Johanne Cohen
  • Xavier Koegler
  • Mikaël Rabie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7109)

Abstract

Population protocols have been introduced by Angluin et al. as a model of networks consisting of very limited mobile agents that interact in pairs but with no control over their own movement. A collection of anonymous agents, modeled by finite automata, interact pairwise according to some rules that update their states. Predicates on the initial configurations that can be computed by such protocols have been characterized as semi-linear predicates.

In an orthogonal way, several distributed systems have been termed in literature as being realizations of games in the sense of game theory.

We investigate under which conditions population protocols, or more generally pairwise interaction rules, correspond to games.

We show that restricting to asymetric games is not really a restriction: all predicates computable by protocols can actually be computed by protocols corresponding to games, i.e. any semi-linear predicate can be computed by a Pavlovian population multi-protocol.

Keywords

Nash Equilibrium Mobile Agent Evolutionary Game Theory Joint Transition Population Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of population protocols. Distributed Computing 20(4), 279–304 (2007)CrossRefMATHGoogle Scholar
  2. 2.
    Angluin, D., Aspnes, J., Chan, M., Fischer, M.J., Jiang, H., Peralta, R.: Stably Computable Properties of Network Graphs. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 63–74. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. In: PODC, pp. 290–299. ACM Press (2004)Google Scholar
  4. 4.
    Angluin, D., Aspnes, J., Eisenstat, D.: Stably computable predicates are semilinear. In: PODC 2006, pp. 292–299. ACM Press, New York (2006)Google Scholar
  5. 5.
    Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-Stabilizing Population Protocols. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 103–117. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Axelrod, R.M.: The Evolution of Cooperation. Basic Books (1984)Google Scholar
  7. 7.
    Beauquier, J., Burman, J., Clément, J., Kutten, S.: On utilizing speed in networks of mobile agents. In: PODC, pp. 305–314 (2010)Google Scholar
  8. 8.
    Binmore, K.: Fun and Games. D.C. Heath and Company (1992)Google Scholar
  9. 9.
    Bournez, O., Chalopin, J., Cohen, J., Koegler, X.: Playing with population protocols. In: The Complexity of a Simple Program, Cork, Irland (2008)Google Scholar
  10. 10.
    Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Ruppert, E.: When Birds Die: Making Population Protocols Fault-Tolerant. In: Gibbons, P.B., Abdelzaher, T., Aspnes, J., Rao, R. (eds.) DCOSS 2006. LNCS, vol. 4026, pp. 51–66. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Dyer, M.E., Goldberg, L., Greenhill, C.S., Istrate, G., Jerrum, M.: Convergence of the iterated prisoner’s dilemma game. Combinatorics, Probability & Computing 11(2) (2002)Google Scholar
  12. 12.
    Fribourg, L., Messika, S., Picaronny, C.: Coupling and self-stabilization. Distributed Computing 18(3), 221–232 (2006)CrossRefMATHGoogle Scholar
  13. 13.
    Fudenberg, D., Levine, D.K.: The Theory of Learning in Games, vol. 624 (1996), http://ideas.repec.org/p/cla/levarc/624.html
  14. 14.
    Hofbauer, J., Sigmund, K.: Evolutionary game dynamics. Bulletin of the American Mathematical Society 4, 479–519 (2003)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Istrate, G., Marathe, M.V., Ravi, S.S.: Adversarial scheduling in evolutionary game dynamics. CoRR, abs/0812.1194, informal publication (2008)Google Scholar
  16. 16.
    Jaggard, A.D., Schapira, M., Wright, R.N.: Distributed computing with adaptive heuristics. In: Proceedings of Innovations in Computer Science ICS (2011)Google Scholar
  17. 17.
    Kraines, D., Kraines, V.: Pavlov and the prisoner’s dilemma. Theory and Decision 26, 47–79 (1988)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Michail, O., Chatzigiannakis, I., Spirakis, P.G.: New Models for Population Protocols. Morgan & Claypool Publishers (2011)Google Scholar
  19. 19.
    Nowak, M., Sigmund, K.: A strategy of win-stay, lose-shift that outperforms tit-for-tat in the Prisoner’s Dilemma game. Nature 364(6432), 56–58 (1993)CrossRefGoogle Scholar
  20. 20.
    Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In: Comptes-rendus du I Congres des Mathematicians des Pays Slaves, pp. 92–101 (1929)Google Scholar
  21. 21.
    Weibull, J.W.: Evolutionary Game Theory. The MIT Press (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Olivier Bournez
    • 1
  • Jérémie Chalopin
    • 2
  • Johanne Cohen
    • 3
  • Xavier Koegler
    • 4
  • Mikaël Rabie
    • 5
  1. 1.Ecole Polytechnique & Laboratoire d’Informatique (LIX)Palaiseau CedexFrance
  2. 2.Laboratoire d’Informatique Fondamentale de MarseilleCNRS & Aix-Marseille UniversitéMarseilleFrance
  3. 3.CNRS & PRiSMVersaillesFrance
  4. 4.LIAFA & Université Paris Diderot - Paris 7ParisFrance
  5. 5.ENS de Lyon & Laboratoire d’Informatique (LIX)Palaiseau CedexFrance

Personalised recommendations