N-party BAR Transfer

  • Xavier Vilaça
  • João Leitão
  • Miguel Correia
  • Luís Rodrigues
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7109)

Abstract

We introduce the N-party BAR transfer problem that consists in reliably transferring arbitrarily large data from a set of N producers to a set of N consumers in the BAR model, i.e., in the presence of Byzantine, Altruistic, and Rational participants. The problem considers the existence of a trusted observer that gathers evidence to testify that the producers and consumers have participated in the transfer. We present an algorithm that solves the problem for N ≥ 2f + 1, where f is the maximum number of Byzantine processes in each of the producer and consumer sets. We do not impose limits on the number of Rational participants, although they can deviate from the algorithm to improve their utility. We show that our algorithm provides a Nash equilibrium.

Keywords

Nash Equilibrium Secret Sharing Rational Participant Strategic Game Rational Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, I., Dolev, D., Gonen, R., Halpern, J.: Distributed computing meets game theory: robust mechanisms for rational secret sharing and multiparty computation. In: PODC 2006, Denver, USA, pp. 53–62 (July 2006)Google Scholar
  2. 2.
    Aiyer, S., Alvisi, L., Clement, A., Dahlin, M., Martin, J.-P., Porth, C.: BAR fault tolerance for cooperative services. In: SOSP 2005, Brighton, United Kingdom, pp. 45–58 (October 2005)Google Scholar
  3. 3.
    Anderson, D.: Boinc: A system for public-resource computing and storage. In: GRID 2004, Pittsburgh, USA, pp. 4–10 (November 2004)Google Scholar
  4. 4.
    Anderson, D., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: SETI@home: an experiment in public-resource computing. Communications of the ACM 45(11), 56–61 (2002)CrossRefGoogle Scholar
  5. 5.
    Axelrod, R.: The Evolution of Cooperation. Basic Books, New York (1984)MATHGoogle Scholar
  6. 6.
    Baldoni, R., Helary, J.-M., Raynal, M., Tanguy, L.: Consensus in Byzantine asynchronous systems. J. Discrete Algorithms 1(2), 185–210 (2003)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Canetti, R., Rabin, T.: Fast asynchronous Byzantine agreement with optimal resilience. In: STOC 1993, New York, USA, pp. 42–51 (1993)Google Scholar
  8. 8.
    Castro, M., Liskov, B.: Practical Byzantine fault tolerance and proactive recovery. ACM Transactions on Computer Systems 20(4), 398–461 (2002)CrossRefGoogle Scholar
  9. 9.
    Clement, A., Napper, J., Li, H., Martin, J.-P., Alvisi, L., Dahlin, M.: Theory of bar games. In: PODC 2007, Portland, USA, pp. 358–359 (August 2007)Google Scholar
  10. 10.
    Correia, M., Neves, N.F., Lung, L.C., Verissimo, P.: Low complexity Byzantine-resilient consensus. Distributed Computing 17(3), 237–249 (2005)CrossRefMATHGoogle Scholar
  11. 11.
    Dolev, D., Strong, H.: Authenticated algorithms for Byzantine agreement. SIAM J. Comput. 12(4), 656–666 (1983)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial synchrony. J. of ACM 35, 288–323 (1988)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Eliaz, K.: Fault tolerant implementation. Review of Economic Studies 69(3), 589–610 (2002)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Fraigniaud, P.: Asymptotically optimal broadcasting and gossiping in faulty hypercube multicomputers. IEEE Transactions on Computers 41(11), 1410–1419 (1992)CrossRefGoogle Scholar
  15. 15.
    Hardin, G.: The tragedy of the commons. Science 162(3859), 1243–1247 (1968)CrossRefGoogle Scholar
  16. 16.
    Keidar, I., Melamed, R., Orda, A.: Equicast: Scalable multicast with selfish users. In: PODC 2006, pp. 63–71 (July 2006)Google Scholar
  17. 17.
    Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: speculative Byzantine fault tolerance. In: SOSP 2007, Stevenson, USA, pp. 45–58 (October 2007)Google Scholar
  18. 18.
    Lamport, L.: The part-time parliament. ACM Trans. on Computer Systems 16(2), 133–169 (1998)CrossRefGoogle Scholar
  19. 19.
    Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans. Program. Lang. Syst. 4, 382–401 (1982)CrossRefMATHGoogle Scholar
  20. 20.
    Lee, S., Shin, K.G.: Interleaved all-to-all reliable broadcast on meshes and hypercubes. IEEE Transactions on Parallel and Distributed Systems 5(5), 449–458 (1994)CrossRefGoogle Scholar
  21. 21.
    Li, H., Clement, A., Marchetti, M., Kapritsos, M., Robison, L., Alvisi, L., Dahlin, M.: Flightpath: Obedience vs choice in cooperative services. In: OSDI 2008, San Diego, USA (December 2008)Google Scholar
  22. 22.
    Li, H., Clement, A., Wong, E., Napper, J., Roy, I., Alvisi, L., Dahlin, M.: BAR gossip. In: OSDI 2006, Seattle, USA, pp. 191–204 (November 2006)Google Scholar
  23. 23.
    Malkhi, D., Reiter, M.: Byzantine quorum systems. In: STOC 1997, El Paso, USA, pp. 569–578 (1997)Google Scholar
  24. 24.
    Martin, J.P., Alvisi, L., Dahlin, M.: Minimal Byzantine storage. In: Malkhi, D. (ed.) DISC 2002. LNCS, vol. 2508, pp. 311–325. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  25. 25.
    Martin, O., Ariel, R.: A Course in Game Theory. MIT Press (1994)Google Scholar
  26. 26.
    Wong, E.L., Leners, J.B., Alvisi, L.: It’s on Me! The Benefit of Altruism in BAR Environments. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 406–420. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Xavier Vilaça
    • 1
  • João Leitão
    • 1
  • Miguel Correia
    • 1
  • Luís Rodrigues
    • 1
  1. 1.INESC-ID, Instituto Superior TécnicoUniversidade Técnica de LisboaPortugal

Personalised recommendations