A Polynomial Time Algorithm for Bounded Directed Pathwidth

  • Hisao Tamaki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6986)


We give a polynomial time algorithm for bounded directed pathwidth. Given a positive integer k and a digraph G with n vertices and m edges, it runs in O(mnk + 1) time and constructs a directed path-decomposition of G of width at most k if one exists and otherwise reports the non-existence.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnborg, S., Corneil, D., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM Journal on Matrix Analysis and Applications 8(2), 277–284Google Scholar
  2. 2.
    Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial k-trees. Discrete Applied Mathematics 23(1), 11–24Google Scholar
  3. 3.
    Barát, J.: Directed path-width and monotonicity in digraph searching. Graphs and Combinatorics 22(2), 161–172 (2006)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S.: DAG-Width and Parity Games. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 524–536. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the pathwidth and treewidth of Graphs. Journal of Algorithms 21, 358–402 (1996)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing 25(6), 1305–1317 (1996)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)CrossRefMATHGoogle Scholar
  8. 8.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)MATHGoogle Scholar
  9. 9.
    Ganian, R., Hliněný, P., Kneis, J., Langer, A., Obdržálek, J., Rossmanith, P.: On Digraph Width Measures in Parameterized Algorithmics. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 185–197. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Hunter, P., Kreutzer, S.: Digraph Measures: Kelly Decompositions, Games, and Orderings. In: Proc. the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 637–644 (2007)Google Scholar
  11. 11.
    Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed tree-width. Journal of Combinatorial Theory Series B 82(1), 138–154 (2001)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kashiwabara, T., Fujisawa, T.: NP-completeness of the problem of finding a minimum-clique-number interval graph containing a given graph as a subgraph. In: Proc. International Symposium on Circuits and Systems, pp. 657–660 (1979)Google Scholar
  13. 13.
    Kinnersley, N.G.: The vertex separation number of a graph equals its path-width. Information Processing Letters 42, 345–350 (1992)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Lampis, M., Kaouri, G., Mitsou, V.: On the Algorithmic Effectiveness of Digraph Decompositions and Complexity Measures. In: Proc. of 19th International Symposium on Algorithms and Computation, pp. 220–231 (2008)Google Scholar
  15. 15.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)Google Scholar
  16. 16.
    Obdržálek, J.: DAG-width - Connectivity Measure for Directed Graphs. In: Proc. the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 814–821 (2006)Google Scholar
  17. 17.
    Robertson, N., Seymour, P.: Graph minors. I. Excluding a forest. Journal of Combinatorial Theory, Series B 35(1), 39–61 (1983)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Robertson, N., Seymour, P.: Graph minors III: Planar tree-width. Journal of Combinatorial Theory, Series B 36(1), 49–64 (1984)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Robertson, N., Seymour, P.: Graph Minors. XX. Wagner’s conjecture. Journal of Combinatorial Theory, Series B 92(2), 325–335 (2004)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Safari, M.A.: D-Width: A More Natural Measure for Directed Tree Width. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 745–756. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Tamaki, H.: A directed path-decomposition approach to exactly identifying attractors of boolean networks. In: Proc. 10th International Symposium on Communications and Information Technologies, pp. 844–849 (2010)Google Scholar
  22. 22.
    Yang, B., Cao, Y.: Digraph searching, directed vertex separation and directed pathwidth. Discrete Applied Mathematics 156(10), 1822–1837 (2008)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hisao Tamaki
    • 1
  1. 1.Department of Computer ScienceMeiji UniversityKawasakiJapan

Personalised recommendations