Advertisement

Recognizing Some Subclasses of Vertex Intersection Graphs of 0-Bend Paths in a Grid

  • Steven Chaplick
  • Elad Cohen
  • Juraj Stacho
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6986)

Abstract

We investigate graphs that can be represented as vertex intersections of horizontal and vertical paths in a grid, known as B 0-VPG graphs. Recognizing these graphs is an NP-hard problem. In light of this, we focus on their subclasses. In the paper, we describe polynomial time algorithms for recognizing chordal B 0-VPG graphs, and for recognizing B 0-VPG graphs that have a representation on a grid with 2 rows.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asinowski, A., et al.: String graphs of k-bend paths on a grid. Electronic Notes in Discrete Mathematics 37, 141–146 (2011); LAGOS 2011 - VI Latin-American Algorithms, Graphs and Optimization Symposium, http://dx.doi.org/10.1016/j.endm.2011.05.025 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Asinowski, A., Cohen, E., Golumbic, M.C., Limouzy, V., Lipshteyn, M., Stern, M.: Intersection graphs of paths on a grid, technical report (2010)Google Scholar
  3. 3.
    Bandy, M., Sarrafzadeh, M.: Stretching a knock-knee layout for multilayer wiring. IEEE Trans. Computing 39, 148–151 (1990)CrossRefGoogle Scholar
  4. 4.
    Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. Journal of Computer and System Sciences 13, 335–379 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cornelsen, S., Schank, T., Wagner, D.: Drawing graphs on two and three lines. Journal of Graph Algorithms and Applications 8, 161–177 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pacific Journal of Mathematics 15, 835–855 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Golumbic, M.C.: Algorithmic graph theory and perfect graphs, 2nd edn. North-Holland (2004)Google Scholar
  8. 8.
    Golumbic, M.C., Ries, B.: On the intersection graphs of orthogonal line segments in the plane: characterizations of some subclasses of chordal graphs (submitted manuscript, 2011)Google Scholar
  9. 9.
    Haeupler, B., Jampani, K.R., Lubiw, A.: Testing simultaneous planarity when the common graph is 2-connected. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part II. LNCS, vol. 6507, pp. 410–421. Springer, Heidelberg (2010)Google Scholar
  10. 10.
    Heckmann, R., Klasing, R., Monien, B., Unger, W.: Optimal Embedding of Complete Binary Trees into Lines and Grids. In: Schmidt, G., Berghammer, R. (eds.) WG 1991. LNCS, vol. 570, pp. 25–35. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  11. 11.
    Jamison, R.E., Mulder, H.M.: Constant tolerance intersection graphs of subtrees of a tree. Discrete Mathematics 290, 27–46 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kratochvíl, J.: Personal communicationGoogle Scholar
  13. 13.
    Kratochvíl, J.: String graphs II. Recognizing string graphs is NP-hard. Journal of Combinatorial Theory B 52, 67–78 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kratochvíl, J., Matoušek, J.: Intersection graphs of segments. Journal of Combinatorial Theory Series B 62, 289–315 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kratochvíl, J., Nešetřil, J.: Independent set and clique problems in intersection-defined classes of graphs. Commentationes Mathematicae Universitatis Carolinae 31, 85–93 (1990)MathSciNetzbMATHGoogle Scholar
  16. 16.
    McMorris, F.R., Scheinerman, E.R.: Connectivity threshold for random chordal graphs. Graphs and Combinatorics 7, 177–181 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Molitor, P.: A survey on wiring. EIK Journal of Information Processing and Cybernetics 27, 3–19 (1991)zbMATHGoogle Scholar
  18. 18.
    Sinden, F.: Topology of thin film circuits. Bell System Technical Journal 45, 1639–1662 (1966)CrossRefzbMATHGoogle Scholar
  19. 19.
    West, D.B.: Introduction to graph theory, 2nd edn. Prentice-Hall (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Steven Chaplick
    • 1
  • Elad Cohen
    • 2
  • Juraj Stacho
    • 2
  1. 1.Department of Computer ScienceUniversity of TorontoTorontoCanada
  2. 2.Caesarea Rothschild InstituteUniversity of HaifaMt. CarmelIsrael

Personalised recommendations