From Few Components to an Eulerian Graph by Adding Arcs

  • Manuel Sorge
  • René van Bevern
  • Rolf Niedermeier
  • Mathias Weller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6986)

Abstract

Eulerian Extension (EE) is the problem to make an arc-weighted directed multigraph Eulerian by adding arcs of minimum total cost. EE is NP-hard and has been shown fixed-parameter tractable with respect to the number of arc additions. Complementing this result, on the way to answering an open question, we show that EE is fixed-parameter tractable with respect to the combined parameter “number of connected components in the underlying undirected multigraph” and “sum of indeg(v) - outdeg(v) over all vertices v in the input multigraph where this value is positive.” Moreover, we show that EE is unlikely to admit a polynomial-size problem kernel for this parameter combination and for the parameter “number of arc additions”.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. Comput. System Sci. 75(8), 423–434 (2009)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Cayley, A.: A theorem on trees. Quart. J. Math. 23, 376–378 (1889)MATHGoogle Scholar
  3. 3.
    Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility Through Colors and IDs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 378–389. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Dorn, F., Moser, H., Niedermeier, R., Weller, M.: Efficient Algorithms for Eulerian Extension. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 100–111. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)CrossRefMATHGoogle Scholar
  6. 6.
    Eiselt, H.A., Gendreau, M., Laporte, G.: Arc routing problems, part II: The rural postman problem. Oper. Res. 43(3), 399–414 (1995)CrossRefMATHGoogle Scholar
  7. 7.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)MATHGoogle Scholar
  8. 8.
    Frederickson, G.N.: Approximation Algorithms for NP-hard Routing Problems. PhD thesis, Faculty of the Graduate School of the University of Maryland (1977)Google Scholar
  9. 9.
    Frederickson, G.N.: Approximation algorithms for some postman problems. J. ACM 26(3), 538–554 (1979)MathSciNetMATHGoogle Scholar
  10. 10.
    Höhn, W., Jacobs, T., Megow, N.: On Eulerian extensions and their application to no-wait flowshop scheduling. J. Sched. (to appear, 2011)Google Scholar
  11. 11.
    Kapoor, S., Ramesh, H.: Algorithms for enumerating all spanning trees of undirected and weighted graphs. SIAM J. Comput. 24, 247–265 (1995)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Lenstra, J.K., Kan, A.H.G.R.: On general routing problems. Networks 6(3), 273–280 (1976)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)Google Scholar
  14. 14.
    Orloff, C.S.: A fundamental problem in vehicle routing. Networks 4(1), 35–64 (1974)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Orloff, C.S.: On general routing problems: Comments. Networks 6(3), 281–284 (1976)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Sorge, M.: On Making Directed Graphs Eulerian. Diplomarbeit, Institut für Informatik, Friedrich-Schiller-Universität Jena, Available electronically. arXiv:1101.4283 [cs.DM] (2011)Google Scholar
  17. 17.
    Sorge, M., van Bevern, R., Niedermeier, R., Weller, M.: A New View on Rural Postman Based on Eulerian Extension and Matching. In: Iliopoulos, C.S. (ed.) IWOCA 2011. LNCS, vol. 7056, pp. 310–323. Springer, Heidelberg (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Manuel Sorge
    • 1
  • René van Bevern
    • 1
  • Rolf Niedermeier
    • 1
  • Mathias Weller
    • 1
  1. 1.Institut für Softwaretechnik und Theoretische InformatikTU BerlinBerlinGermany

Personalised recommendations