Parameterized Two-Player Nash Equilibrium

  • Danny Hermelin
  • Chien-Chung Huang
  • Stefan Kratsch
  • Magnus Wahlström
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6986)

Abstract

We study the problem of computing Nash equilibria in a two-player normal form (bimatrix) game from the perspective of parameterized complexity. Recent results proved hardness for a number of variants, when parameterized by the support size. We complement those results, by identifying three cases in which the problem becomes fixed-parameter tractable. Our results are based on a graph-theoretic representation of a bimatrix game, and on applying graph-theoretic tools on this representation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbott, T., Kane, D., Valiant, P.: On the complexity of two-player win-lose games. In: Proc. of the 46th Annual IEEE symposium on Foundations of Computer Science (FOCS), pp. 113–122 (2005)Google Scholar
  2. 2.
    Addario-Berry, L., Olver, N., Vetta, A.: A polynomial time algorithm for finding Nash equilibria in planar win-lose games. Journal of Graph Algorithms and Applications 11(1), 309–319 (2007)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bodlaender, H., Downey, R., Fellows, M., Hermelin, D.: On problems without polynomial kernels. Journal of Computer and System Sciences 75(8), 423–434 (2009)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bosse, H., Byrka, J., Markakis, E.: New algorithms for approximate Nash equilibria in bimatrix games. Theoretical Computer Science 411(1), 164–173 (2010)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chen, J., Chor, B., Fellows, M., Huang, X., Juedes, D., Kanj, I., Xia, G.: Tight lower bounds for certain parameterized NP-hard problems. Information and Computation 201(2), 216–231 (2005)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Chen, X., Deng, X.: 3-NASH is PPAD-complete. Electronic Colloquium on Computational Complexity (134) (2005)Google Scholar
  7. 7.
    Chen, X., Deng, X.: Settling the complexity of two-player Nash equilibrium. In: Proc. of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 261–272 (2006)Google Scholar
  8. 8.
    Chen, X., Deng, X., Teng, S.-H.: Computing Nash equilibria: Approximation and smoothed complexity. In: Proc. of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 603–612 (2006)Google Scholar
  9. 9.
    Chen, X., Deng, X., Teng, S.-H.: Sparse Games are Hard. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 262–273. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Chen, X., Teng, S.-H., Valiant, P.: The approximation complexity of win-lose games. In: Proc. of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 159–168 (2007)Google Scholar
  11. 11.
    Codenotti, B., Leoncini, M., Resta, G.: Efficient Computation of Nash Equilibria for Very Sparse Win-Lose Bimatrix Games. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 232–243. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a Nash equilibrium. Commun. ACM 52(2), 89–97 (2009)CrossRefMATHGoogle Scholar
  13. 13.
    Daskalakis, C., Mehta, A., Papadimitriou, C.: Progress in approximate Nash equilibria. In: Proc. of the 8th ACM Conference on Electronic Commerce (EC), pp. 355–358 (2007)Google Scholar
  14. 14.
    Daskalakis, C., Mehta, A., Papadimitriou, C.: A note on approximate Nash equilibria. Theoretical Computer Science 410(17), 1581–1588 (2009)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Daskalakis, C., Papadimitriou, C.: On oblivious PTAS’s for Nash equilibrium. In: Proc. of the 41st Annual ACM Symposium on Theory of Computing (STOC), pp. 75–84 (2009)Google Scholar
  16. 16.
    Daskalakis, K., Papadimitriou, C.: Three-player games are hard. Electronic Colloquium on Computational Complexity (139) (2005)Google Scholar
  17. 17.
    Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)CrossRefMATHGoogle Scholar
  18. 18.
    Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. Journal of Graph Algorithms and Applications 3(3) (1999)Google Scholar
  19. 19.
    Estivill-Castro, V., Parsa, M.: Computing Nash equilibria gets harder: New results show hardness even for parameterized complexity. In: Proc. of the 15th Computing: the Australasian Theory Symposium (CATS), vol. 94, pp. 81–87 (2009)Google Scholar
  20. 20.
    Estivill-Castro, V., Parsa, M.: Single Parameter FPT-Algorithms for Non-Trivial Games. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2010. LNCS, vol. 6460, pp. 121–124. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)MATHGoogle Scholar
  22. 22.
    Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. J. Comput. Syst. Sci. 77(1), 91–106 (2011)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Gilboa, I., Zemel, E.: Nash and correlated equillbrla: Some complexity considerations. Games and Economic Behavior (1989)Google Scholar
  24. 24.
    Goldberg, P., Papadimitriou, C.: Reducibility among equilibrium problems. In: Proc. of the 38th Annual ACM Symposium on Theory of Computing (STOC), pp. 61–70 (2006)Google Scholar
  25. 25.
    Hermelin, D., Huang, C.-C., Kratsch, S., Wahlström, M.: Parameterized two-player Nash equilibrium. CoRR (2010), http://arxiv.org/abs/1006.2063
  26. 26.
    Kalyanaraman, S., Umans, C.: Algorithms for playing games with limited randomness, pp. 323–334 (2007)Google Scholar
  27. 27.
    Kannan, R., Theobald, T.: Games of fixed rank: A hierarchy of bimatrix games. In: Proc. of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1124–1132 (2007)Google Scholar
  28. 28.
    Kontogiannis, S., Spirakis, P.: Exploiting concavity in bimatrix games: New polynomially tractable subclasses. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX 2010, LNCS, vol. 6302, pp. 312–325. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  29. 29.
    Lipton, R., Markakis, E., Mehta, A.: Playing large games using simple strategies. In: Proc. of the 4th ACM Conference on Electronic Commerce (EC), pp. 36–41 (2003)Google Scholar
  30. 30.
    Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.: Algorithmic Game Theory. Cambridge University Press (2007)Google Scholar
  31. 31.
    Papadimitriou, C.: Algorithms, games, and the internet. In: Proc. of the 33rd Annual ACM Symposium on Theory of Computing (STOC), pp. 749–753 (2001)Google Scholar
  32. 32.
    Tsaknakis, H., Spirakis, P.G.: An Optimization Approach for Approximate Nash Equilibria. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 42–56. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Danny Hermelin
    • 1
  • Chien-Chung Huang
    • 2
  • Stefan Kratsch
    • 3
  • Magnus Wahlström
    • 1
  1. 1.Max-Planck-Institute for InformaticsSaarbrückenGermany
  2. 2.Humboldt-Universität zu BerlinGermany
  3. 3.Utrecht UniversityUtrechtThe Netherlands

Personalised recommendations