List Coloring in the Absence of a Linear Forest

  • Jean-François Couturier
  • Petr A. Golovach
  • Dieter Kratsch
  • Daniël Paulusma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6986)


The k-Coloring problem is to decide whether a graph can be colored with at most k colors such that no two adjacent vertices receive the same color. The List k-Coloring problem requires in addition that every vertex u must receive a color from some given set L(u) ⊆ {1,…,k}. Let Pn denote the path on n vertices, and G + H and rH the disjoint union of two graphs G and H and r copies of H, respectively. For any two fixed integers k and r, we show that List k-Coloring can be solved in polynomial time for graphs with no induced rP1 + P5, hereby extending the result of Hoàng, Kamiński, Lozin, Sawada and Shu for graphs with no induced P5. Our result is tight; we prove that for any graph H that is a supergraph of P1 + P5 with at least 5 edges, already List 5-Coloring is NP-complete for graphs with no induced H. We also show that List k-Coloring is fixed parameter tractable in k + r on graphs with no induced rP1 + P2, and that k-Coloring restricted to such graphs allows a polynomial kernel when parameterized by k. Finally, we show that List k-Coloring is fixed parameter tractable in k for graphs with no induced P1 + P3.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bacsó, G., Tuza, Z.: Dominating cliques in P 5-free graphs. Periodica Mathematica Hungarica 21, 303–308 (1990)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer Graduate Texts in Mathematics, vol. 244 (2008)Google Scholar
  3. 3.
    Broersma, H., Fomin, F.V., Golovach, P.A., Paulusma, D.: Three Complexity Results on Coloring P k-Free Graphs. In: Fiala, J., Kratochvíl, J., Miller, M. (eds.) IWOCA 2009. LNCS, vol. 5874, pp. 95–104. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Broersma, H.J., Golovach, P.A., Paulusma, D., Song, J.: Updating the complexity status of coloring graphs without a fixed induced linear forest (manuscript)Google Scholar
  5. 5.
    Broersma, H.J., Golovach, P.A., Paulusma, D., Song, J.: Determining the chromatic number of triangle-free 2P 3-free graphs in polynomial time (manuscript)Google Scholar
  6. 6.
    Bruce, D., Hoàng, C.T., Sawada, J.: A Certifying Algorithm for 3-Colorability of P 5-Free Graphs. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 594–604. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Dabrowski, K., Lozin, V., Raman, R., Ries, B.: Colouring Vertices of Triangle-Free Graphs. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 184–195. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)CrossRefMATHGoogle Scholar
  9. 9.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)MATHGoogle Scholar
  10. 10.
    Golovach, P.A., Paulusma, D., Song, J.: 4-Coloring H-free graphs when H is small (manuscript)Google Scholar
  11. 11.
    Grötschel, M., Lovász, L., Schrijver, A.: Polynomial algorithms for perfect graphs. Ann. Discrete Math., Topics on Perfect Graphs 21, 325–356 (1984)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Hoàng, C.T., Kamiński, M., Lozin, V., Sawada, J., Shu, X.: Deciding k-colorability of P 5-free graphs in polynomial time. Algorithmica 57, 74–81 (2010)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10, 718–720 (1981)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Jansen, K., Scheffler, P.: Generalized coloring for tree-like graphs. Discrete Appl. Math. 75, 135–155 (1997)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Kamiński, M., Lozin, V.V.: Coloring edges and vertices of graphs without short or long cycles. Contributions to Discrete Math. 2, 61–66 (2007)MathSciNetMATHGoogle Scholar
  16. 16.
    Kamiński, M., Lozin, V.V.: Vertex 3-colorability of Claw-free Graphs. Algorithmic Operations Research 21 (2007)Google Scholar
  17. 17.
    Král’, D., Kratochvíl, J., Tuza, Z., Woeginger, G.J.: Complexity of coloring graphs without forbidden induced subgraphs. In: Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 254–262. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Kratochvíl, J.: Precoloring extension with fixed color bound. Acta Math. Univ. Comen. 62, 139–153 (1993)MathSciNetMATHGoogle Scholar
  19. 19.
    Le, V.B., Randerath, B., Schiermeyer, I.: On the complexity of 4-coloring graphs without long induced paths. Theoret. Comput. Sci. 389, 330–335 (2007)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Leven, D., Galil, Z.: NP completeness of finding the chromatic index of regular graphs. Journal of Algorithms 4, 35–44 (1983)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Maffray, F., Preissmann, M.: On the NP-completeness of the k-colorability problem for triangle-free graphs. Discrete Math. 162, 313–317 (1996)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and its Applications. Oxford University Press (2006)Google Scholar
  23. 23.
    Randerath, B., Schiermeyer, I.: 3-Colorability ∈ P for P 6-free graphs. Discrete Appl. Math. 136, 299–313 (2004)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Randerath, B., Schiermeyer, I.: Vertex colouring and forbidden subgraphs - a survey. Graphs Combin. 20, 1–40 (2004)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Schindl, D.: Some new hereditary classes where graph coloring remains NP-hard. Discrete Math. 295, 197–202 (2005)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Tuza, Z.: Graph colorings with local restrictions - a survey. Discuss. Math. Graph Theory 17, 161–228 (1997)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Woeginger, G.J., Sgall, J.: The complexity of coloring graphs without long induced paths. Acta Cybernet. 15, 107–117 (2001)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jean-François Couturier
    • 1
  • Petr A. Golovach
    • 2
  • Dieter Kratsch
    • 1
  • Daniël Paulusma
    • 2
  1. 1.Laboratoire d’Informatique Théorique et AppliquéeUniversité Paul Verlaine - MetzMetz Cedex 01France
  2. 2.School of Engineering and Computing SciencesDurham University, Science LaboratoriesDurhamUnited Kingdom

Personalised recommendations