Structures and Hyperstructures in Metabolic Networks

  • Alberto Marchetti-Spaccamela
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6986)

Introduction

There has been an increasing interest by the computational biology community in the study of chemical reactions within cells; indeed cells can be considered as chemical factories that manufacture the various products of the cells and the metabolic capacities of an organism are directly defined by the set of its possible biochemical reactions. The links between reactions and compounds (or metabolites) that are used and produced by such reactions constitute the metabolic network an organism.

Keywords

Metabolic Network Elementary Mode Free Network Target Metabolite Intracellular Symbiont 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acuña, V., Chierichetti, F., Lacroix, V., Marchetti-Spaccamela, A., Sagot, M.F., Stougie, L.: Modes and cuts in metabolic networks: Complexity and algorithms. Biosystems 95(1), 51–60 (2009)CrossRefGoogle Scholar
  2. 2.
    Acuña, V., Marchetti-Spaccamela, A., Sagot, M.F., Stougie, L.: A note on the complexity of finding and enumerating elementary modes. Biosystems 99(3), 210–214 (2010)CrossRefGoogle Scholar
  3. 3.
    Cottret, L., Milreu, P.V., Acuña, V., Marchetti-Spaccamela, A., Stougie, L., Charles, H., Sagot M.F.: Graph-based analysis of the metabolic exchanges between two co-resident intracellular symbionts, baumannia cicadellinicola and sulcia muelleri, with their insect host, homalodisca coagulata. PLOS Computational Biology 6 (2010)Google Scholar
  4. 4.
    Picard, F., Daudin, J.-J., Robin, S.: A mixture model for random graphs. Statistics and Computing 18(2), 173–183 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabási, A.-L.: The large-scale organization of metabolic networks. Nature 407(5), 651–654 (2000)Google Scholar
  6. 6.
    Keller, E.F.: Revisiting scale-free networks. Bioessays 27(10), 1060–1068 (2005)CrossRefGoogle Scholar
  7. 7.
    Khanin, R., Wit, E.: How scale-free are biological networks. Journal of Computational Biology 13(3), 810–818 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Lacroix, V., Cottret, L., Thébault, P., Sagot, M.F.: An introduction to metabolic networks and their structural analysis. IEEE/ACM Trans. Comput. Biology Bioinform. 5(4), 594–617 (2008)CrossRefGoogle Scholar
  9. 9.
    Ma, H., Zeng, A.P.: Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms. Bioinformatics 19(2), 270–277 (2003)CrossRefGoogle Scholar
  10. 10.
    Milreu, P.V., Acuña, V., Birmelé, E., Crescenzi, P., Marchetti-Spaccamela, A., Sagot, M.F., Stougie, L., Lacroix, V.: Enumerating Chemical Organisations in Consistent Metabolic Networks: Complexity and Algorithms. In: Moulton, V., Singh, M. (eds.) WABI 2010. LNCS, vol. 6293, pp. 226–237. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabási, A.L.: Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002)CrossRefGoogle Scholar
  12. 12.
    Stumpf, M.P.H., Wiuf, C., May, R.M.: Subnets of scale-free networks are not scale-free: Sampling properties of networks. PNAS 102(12), 4221–4224 (2005)CrossRefGoogle Scholar
  13. 13.
    Terzer, M., Stelling, J.: Large-scale computation of elementary flux modes with bit pattern trees. Bioinformatics 24(19), 2229–2235 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alberto Marchetti-Spaccamela
    • 1
  1. 1.Sapienza Università di RomaItaly

Personalised recommendations