Numerical Simulation and Prediction of Wrinkling Defects in Sheet Metal Forming

  • M. P. Henriques
  • T. J. Grilo
  • R. J. Alves de Sousa
  • R. A. F. Valente

Abstract

The goal of the present work is to analyse distinct numerical simulation strategies, based on the Finite Element Method (FEM), aiming at the description of wrinkling initiation and propagation during sheet metal forming. From the FEM standpoint, the study focuses on two particular aspects: a) the influence of a given finite element formulation as well as the numerical integration choice on the correct prediction of wrinkling in walls and flange zones of cup drawing formed parts; and b) the influence of the chosen anisotropic constitutive model and corresponding parameters on the correct prediction and propagation of wrinkling deformation modes during forming operations. In this sense, this work infers about the influence of accounting for distinct planar anisotropy behaviours within numerical simulation procedures. Free and flange-forming examples will be taken into consideration, with isotropic and anisotropic material models. Additionally, the influence on wrinkling onset and propagation as coming from different numerical formulations will be accounted for shell and tridimensional continuum finite elements, along with implicit numerical solution procedures. Doing so, the present work intends to provide some insights into how numerical simulation parameters and modelling decisions can influence FEM results regarding wrinkling defects in sheet metal formed parts.

Keywords

Sheet Metal Yield Criterion Shell Element Integration Point Thickness Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hill, R.: A general theory of uniqueness and stability in elastic-plastic solids. Journal of the Mechanics and Physics of Solids 6, 236–249 (1958)CrossRefMATHGoogle Scholar
  2. 2.
    Hutchinson, J.W.: Plastic buckling. Advances in Applied Mechanics 14, 67–144 (1974)CrossRefGoogle Scholar
  3. 3.
    Hutchinson, J.W., Neale, K.W.: Wrinkling of curved thin sheet metal. Plastic Instability, pp. 71-78. Presses des Ponts et Chaussées, Paris (1985)Google Scholar
  4. 4.
    Petryk, H.: Plastic instability: criteria and computational approaches. Archives of Computational Methods in Engineering 4, 111–151 (1997)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Cao, J., Boyce, M.C.: Wrinkling behaviour of rectangular plates under lateral constraint. International Journal of Solids and Structures 34, 153–176 (1997)CrossRefMATHGoogle Scholar
  6. 6.
    Cao, J.: Prediction of plastic wrinkling using the energy method. Journal of Applied Mechanics - Transactions of ASME 66, 646–652 (1999)CrossRefGoogle Scholar
  7. 7.
    Magalhães Correia, J.P., Ferron, G.: Wrinkling of anisotropic metal sheets under deep-drawing: analytical and numerical study. Journal of Materials Processing Technology, 155–156, 1604–1610 (2004)Google Scholar
  8. 8.
    Kawka, M., Olejnik, L., Rosochowski, A., Sunaga, H., Maknouchi, A.: Simulation of wrinkling in sheet metal forming. Journal of Materials Processing Technology 109, 283–289 (2001)CrossRefGoogle Scholar
  9. 9.
    Wang, X., Lee, L.H.N.: Post-bifurcation behaviour of wrinkles in square metal sheet under Yoshida test. International Journal of Plasticity 9, 1–19 (1993)CrossRefMATHGoogle Scholar
  10. 10.
    Wang, C.T., Kinzel, Z., Altan, T.: Wrinkling criterion for an anisotropic shell with compound curvatures in sheet forming. International Journal of Mechanical Sciences 36, 945–960 (1994)CrossRefMATHGoogle Scholar
  11. 11.
    Nordlund, P.: Adaptivity and wrinkle indication in sheet metal forming. Computer Methods in Applied Mechanics and Engineering 161, 114–127 (1998)CrossRefGoogle Scholar
  12. 12.
    Wang, X., Cao, J.: On the prediction of side-wall wrinkling in sheet metal forming processes. International Journal of Mechanical Sciences 42, 2369–2394 (2000)CrossRefMATHGoogle Scholar
  13. 13.
    Kim, J.B., Yang, D.Y., Yoon, J.W., Barlat, F.: The effect of plastic anisotropy on compressive instability in sheet metal forming. International Journal of Plasticity 16, 649–676 (2000)CrossRefMATHGoogle Scholar
  14. 14.
    Kim, J.B., Yoon, J.W., Yang, D.Y.: Investigation into the wrinkling behaviour of thin sheets in the cylindrical cup deep drawing process using bifurcation theory. International Journal for Numerical Methods in Engineering 56, 1673–1705 (2003)CrossRefMATHGoogle Scholar
  15. 15.
    Lu, H., Cheng, H.S., Cao, J., Liu, W.K.: Adaptive enrichment meshfree simulation and experiment on buckling and post-buckling analysis in sheet metal forming. Computer Methods in Applied Mechanics and Engineering 194, 2569–2590 (2005)CrossRefMATHGoogle Scholar
  16. 16.
    Magalhães Correia, J.P., Ferron, G.: Wrinkling predictions in the deep-drawing process of anisotropic metal sheets. Journal of Material Processing Technology 128, 199–211 (2002)CrossRefGoogle Scholar
  17. 17.
    Magalhães Correia, J.P., Ferron, G., Moreira, L.P.: Analytical and numerical investigation of wrinkling for deep-drawing anisotropic metal sheets. International Journal of Mechanical Sciences 45, 1167–1180 (2003)CrossRefMATHGoogle Scholar
  18. 18.
    Kim, Y., Son, Y.: Study on wrinkling limit diagram of anisotropic sheet metal. Journal of Materials Processing Technology 97, 88–94 (2000)CrossRefGoogle Scholar
  19. 19.
    Obermeyer, E.J., Majlessi, S.A.: A review of recent advances in the application of blank-holder force towards improving the forming limits of sheet metal parts. Journal of Materials Processing Technology 75, 222–234 (1998)CrossRefGoogle Scholar
  20. 20.
    Belytschko, T., Moes, N., Usui, S., Parimi, C.: Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50, 993–1013 (2001)CrossRefMATHGoogle Scholar
  21. 21.
    Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. International Journal for Numerical Methods in Engineering 37, 229–256 (1994)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Narayanasamy, R., Loganathan, C.: Some studies on wrinkling limit of commercially pure aluminium sheet metals of different grades when drawn through conical and tractrix dies. International Journal of Mechanics and Materials in Design 3, 129–144 (2006)CrossRefGoogle Scholar
  23. 23.
    Loganathan, C., Narayanasamy, R.: Effect of die profile on the wrinkling behaviour of three different commercially pure aluminium grades when drawn through conical and tractrix dies. Journal of Engineering & Materials Sciences 13, 45–54 (2006)Google Scholar
  24. 24.
    Wu-rong, W., Guan-long, C., Zhong-qin, L.: The effect of binder layouts on the sheet metal formability in the stamping with Variable Blank Holder Force. Journal of Materials Processing Technology 210, 1378–1385 (2010)CrossRefGoogle Scholar
  25. 25.
    Morovvati, M.R., Mollaei-Dariani, B., Asadian-Ardakani, M.H.: A theoretical, numerical, and experimental investigation of plastic wrinkling of circular two-layer sheet metal in the deep drawing. Journal of Materials Processing Technology 210, 1738–1747 (2010)CrossRefGoogle Scholar
  26. 26.
    Stoughton, T.B., Yoon, J.W.: A new approach for failure criterion for sheet metals. International Journal of Plasticity 27, 440–459 (2011)CrossRefMATHGoogle Scholar
  27. 27.
    Oh, K.S., Oh, K.H., Jang, J.H., Kim, D.J., Han, K.S.: Design and analysis of new test method for evaluation of sheet metal formability. Journal of Materials Processing Technology 211, 695–707 (2011)CrossRefGoogle Scholar
  28. 28.
    Taherizadeh, A., Green, D.E., Ghaei, A., Yoon, J.W.: A non-associated constitutive model with mixed iso-kinematic hardening for finite element simulation of sheet metal forming. International Journal of Plasticity 26, 288–309 (2010)CrossRefMATHGoogle Scholar
  29. 29.
    Ravindran, R., Manonmani, K., Narayanasmay, R.: An analysis of wrinkling limit diagrams of aluminium alloy 5005 annealed at different temperatures. International Journal of Material Forming 3, 103–115 (2010)CrossRefGoogle Scholar
  30. 30.
    Savaş, V., Seçgin, Ö.: An experimental investigation of forming load and side-wall thickness obtained by a new deep drawing die. International Journal of Material Forming 3, 209–213 (2010)CrossRefGoogle Scholar
  31. 31.
    Port, A.L., Thuillier, S., Manach, P.Y.: Occurrence and numerical prediction of surface defects during flanging of metallic sheets. International Journal of Material Forming 3, 215–223 (2010)CrossRefGoogle Scholar
  32. 32.
    Hibbitt, Karlsson, Sorensen: ABAQUS/Standard v.6.5 User’s manual. Habbitt Karlsson & Sorensen, Inc., USA (1998)Google Scholar
  33. 33.
    Hill, R.: A theory of the yielding and plastic flow of anisotropic metals. Mathematical and Physical Sciences 193, 281–297 (1948)CrossRefMATHGoogle Scholar
  34. 34.
    Habraken, A.M.: Modelling the plastic anisotropy of metals. Archives of Computational Methods in Engineering 11, 3–96 (2004)CrossRefMATHGoogle Scholar
  35. 35.
    Barlat, F., Lege, D.J., Brem, J.C.: A six-component yield function for anisotropic materials. International Journal of Plasticity 7, 693–712 (1991)CrossRefGoogle Scholar
  36. 36.
    Barlat, F., Aretz, H., Yoon, J.W., Karabin, M.E., Brem, J.C., Dick, R.E.: Linear transformation-based anisotropic yield functions. International Journal of Plasticity 21, 1009–1039 (2005)CrossRefMATHGoogle Scholar
  37. 37.
    Grilo, T.J.: Study of anisotropic constitutive models for metallic sheets. MSc Dissertation, University of Aveiro, Portugal (2011) (in Portuguese)Google Scholar
  38. 38.
    Hershey, A.V.: The plasticity of an isotropic aggregate of anisotropic face centered cubic crystals. Journal of Applied Mechanics 21, 241–249 (1976)Google Scholar
  39. 39.
    Narayanasamy, R., Sowerby, R.: Wrinkling behaviour of cold-rolled sheet metals when drawing through a tractrix die. Journal of Materials Processing Technology 49, 199–211 (1995)CrossRefGoogle Scholar
  40. 40.
    Loganathan, C., Narayanasamy, R.: Wrinkling of commercially pure aluminium sheet metals of different grades when drawn through conical and tractrix dies. Materials Science and Engineering A 419, 331–343 (2006)CrossRefGoogle Scholar
  41. 41.
    Narayanasamy, R., Loganathan, C.: The influence of friction on the prediction of wrinkling of prestrained blanks when drawing through conical die. Materials and Design 28, 904–912 (2007)CrossRefGoogle Scholar
  42. 42.
    Alves, J.L.C.M.: Numerical Simulation of the Sheet Metal Forming Process of Metallic Sheets. PhD Thesis, University of Minho, Portugal (2003) (in Portuguese)Google Scholar
  43. 43.
    Yoon, J.W., Barlat, F., Chung, K., Pourboghrat, F., Yang, D.Y.: Earing predictions based on asymmetric nonquadratic yield function. International Journal of Plasticity 16, 1075–1104 (2000)CrossRefMATHGoogle Scholar
  44. 44.
    Yoon, J.W., Barlat, F., Dick, R.E., Chung, K., Kang, T.J.: Plane stress yield function for aluminum alloy sheets - part II: FE formulation and its implementation. International Journal of Plasticity 20, 495–522 (2004)CrossRefMATHGoogle Scholar
  45. 45.
    Yoon, J.W., Barlat, F., Dick, R.E., Karabin, M.E.: Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function. International Journal of Plasticity 22, 174–193 (2006)CrossRefMATHGoogle Scholar
  46. 46.
    Valente, R.A.F., Alves de Sousa, R.J., Natal Jorge, R.M.: An enhanced strain 3D element for a large deformation elastoplastic thin-shell applications. Computational Mechanics 34(1), 38–52 (2004)CrossRefMATHGoogle Scholar
  47. 47.
    Parente, M.P.L., Valente, R.A.F., Natal Jorge, R.M., Cardoso, R.P.R., Alves de Sousa, R.J.: Sheet metal forming simulation using EAS solid-shell elements. Finite Elements in Analysis and Design 42, 1137–1149 (2006)CrossRefGoogle Scholar
  48. 48.
    Alves de Sousa, R.J., Yoon, J.W., Cardoso, R.P.R., Valente, R.A.F., Grácio, J.J.: On the use of a reduced enhanced solid-shell (RESS) element for sheet forming simulations. International Journal of Plasticity 23, 490–515 (2007)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • M. P. Henriques
    • 1
  • T. J. Grilo
    • 1
  • R. J. Alves de Sousa
    • 1
  • R. A. F. Valente
    • 1
  1. 1.GRIDS Research Group Centre for Automation and Mechanical Technology (TEMA) Department of Mechanical EngineeringUniversity of AveiroAveiroPortugal

Personalised recommendations