Finite Element Modeling of Chip Formation in Orthogonal Machining

  • Amrita Priyadarshini
  • Surjya K. Pal
  • Arun K. Samantaray

Abstract

Finite element method has gained immense popularity in the area of metal cutting for providing detailed insight in to the chip formation process. This chapter presents an overview of the application of finite element method in the study of metal cutting process. The basics of both metal cutting and finite element methods, being the foremost in understanding the applicability of finite element method in metal cutting, have been discussed in brief. Few of the critical issues related to finite element modeling of orthogonal machining have been cited through various case studies. This would prove very helpful for the readers not simply because it provides basic steps for formulating FE model for machining but also focuses on the issues that should be taken care of in order to come up with accurate and reliable FE simulations.

Keywords

Tool Wear Chip Thickness Chip Formation Metal Cutting Arbitrary Lagrangian Eulerian 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Astakhov, V.P.: Tribology of Metal Cutting. Elsevier (2006) ISBN: 978-0-444-52881-0 Google Scholar
  2. 2.
    Shaw, M.C.: Metal Cutting principles, 2nd edn. Oxford University Press, Oxford (2005)Google Scholar
  3. 3.
    Hahn, R.S.: On the temperature developed at the shear plane in the metal cutting process. In: Proceedings of First U.S. National Congress Appl. Mech. ASME 661 (1951)Google Scholar
  4. 4.
    Chao, B.T., Trigger, K.J.: An analytical evaluation of metal cutting temperature. Trans. ASME 73, 57–68 (1951)Google Scholar
  5. 5.
    Leone, W.C.: Distribution of shear-zone heat in metal cutting. Trans. ASME 76, 121–125 (1954)Google Scholar
  6. 6.
    Loewen, E.G., Shaw, M.C.: On the analysis of cutting tool temperatures. Transactions of the ASME 71, 217–231 (1954)Google Scholar
  7. 7.
    Weiner, J.H.: Shear plane temperature distribution in orthogonal machining. Trans. ASME 77, 1331–1341 (1955)Google Scholar
  8. 8.
    Rapier, A.C.: A theoretical investigation of the temperature distribution in the metal cutting process. Br. J. Appl. Phys. 5, 400–405 (1954)CrossRefGoogle Scholar
  9. 9.
    Bagci, E.: 3-D numerical analysis of orthogonal cutting process via mesh-free method. Int. J. the Physical Sciences 6(6), 1267–1282 (2011)MathSciNetGoogle Scholar
  10. 10.
    ASM Handbook, Volume 16-Machining, ASM International Handbook Committee, ASM International, Electronic (1989) ISBN: 978-1-61503-145-0Google Scholar
  11. 11.
    Juneja, B.L., Sekhon, G.S., Seth, N.: Fundamentals of metal cutting and machine tools, 2nd edn. New Age International Publishers, New Delhi (2003)Google Scholar
  12. 12.
    Merchant, M.E.: Mechanics of the metal cutting process. J. Appl. Phys. 16, 318–324 (1945)CrossRefGoogle Scholar
  13. 13.
    Lee, E.H., Shaffer, B.W.: The theory of plasticity applied to a problem of machining. Trans. ASME, J. Appl. Mech. 18, 405–413 (1951)Google Scholar
  14. 14.
    Oxley, P.L.B.: Shear angle solutions in orthogonal machining. Int. J. Mach. Tool. Des. Res. 2, 219–229 (1962)CrossRefGoogle Scholar
  15. 15.
    Bhattacharya, A.: Metal cutting theory and practice. Central book publishers, Kolkata (1984)Google Scholar
  16. 16.
    Lacale, L.N., Guttierrez, A., Llorente, J.I., Sanchez, J.A., Aboniga, J.: Using high pressure coolant in the drilling and turning of low machinability alloys. Int. J. of Adv. Tech. 16, 85–91 (2000)CrossRefGoogle Scholar
  17. 17.
    Tobias, S.A.: Machine tool Vibration. Blackie and Sons Ltd, Scotland (1965)Google Scholar
  18. 18.
    Ghosh, A., Mallik, A.K.: Manufacturing science (1985) ISBN: 81-85095-85-X Google Scholar
  19. 19.
    Jacobson, S., Wallen, P.: A new classification system for dead zones in metal cutting. Int. J. Mach. Tool. Manufact. 28, 529–538 (1988)CrossRefGoogle Scholar
  20. 20.
    Trent, E.M., Wright, P.K.: Metal cutting, 4th edn. Butterworth-Heinemann (2000)Google Scholar
  21. 21.
    Komanduri, R., Hou, Z.B.: A review of the experimental techniques for the measurement of heat and temperatures generated in some manufacturing processes and tribology. Tribol. Int. 34, 653–682 (2001)CrossRefGoogle Scholar
  22. 22.
    Groover, M.P.: Fundamentals of modern manufacturing: materials processes, and systems, 2nd edn. Wiley, India (2002)Google Scholar
  23. 23.
    Klamecki, B.E.: Incipient chip formation in metal cutting- A three dimensional finite element analysis. Ph.D. Thesis. University of Illinois, Urbana (1973)Google Scholar
  24. 24.
    Hughes, J.R.T.: The Finite Element Method. Prentice-Hall International, Inc. (1987)Google Scholar
  25. 25.
    Reddy, J.N.: An introduction to the finite element method, 2nd edn. McGraw-Hill Inc. (1993)Google Scholar
  26. 26.
    Bathe, K.J.: Finite Element Procedures. Prentice Hall, Englewood Cliffs (1996)Google Scholar
  27. 27.
    Rao, S.S.: The Finite Element in Engineering, 3rd edn. Butterworth-Heinemann (1999)Google Scholar
  28. 28.
    Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, 5th edn. Butterworth-Heinemann (2000)Google Scholar
  29. 29.
    Liu, G.R., Quek, S.S.: The Finite Element Method: A Practical Course. Butterworth Hienemann (2003)Google Scholar
  30. 30.
    Hutton, D.V.: Fundamentals of finite element analysis, 1st edn. Mc Graw Hill (2004)Google Scholar
  31. 31.
    Belytschko, T., Liu, W.K., Moran, B.: Nonlinear Finite Elements for Continua and Structures. John Wiley and Sons, New York (2000)MATHGoogle Scholar
  32. 32.
    Strenkowski, J.S., Moon, K.-J.: Finite element prediction of chip geometry and tool/workpiece temperature distributions in orthogonal metal cutting. ASME J. Eng. Ind. 112, 313–318 (1990)CrossRefGoogle Scholar
  33. 33.
    Raczy, A., Elmadagli, M., Altenhof, W.J., Alpas, A.T.: An Eulerian finite-element model for determination of deformation state of a copper subjected to orthogonal cutting. Metall Mater. Trans. 35A, 2393–2400 (2004)CrossRefGoogle Scholar
  34. 34.
    Mackerle, J.: Finite element methods and material processing technology, an addendum (1994–1996). Eng. Comp. 15, 616–690 (1962)CrossRefGoogle Scholar
  35. 35.
    Rakotomalala, R., Joyot, P., Touratier, M.: Arbitrary Lagrangian-Eulerian thermomechanical finite element model of material cutting. Comm. Numer. Meth. Eng. 9, 975–987 (1993)CrossRefMATHGoogle Scholar
  36. 36.
    Pepper, D.W., Heinrich, J.C.: The Finite Element Method: Basic Concepts and Applications. Hemisphere Publishing Corporation, United States of America (1992)Google Scholar
  37. 37.
    Bower, A.F.: Applied mechanics of solid. CRC Press, Taylor and Francis Group, New York (2010)Google Scholar
  38. 38.
    Dhondt, G.: The finite element method for three-dimensional thermomechanical applications. John Wiley and Sons Inc., Germany (2004)CrossRefMATHGoogle Scholar
  39. 39.
    Pian, T.H.H.: Derivation of element stiffness matrices by assumed stress distributions. AIAA J. 2, 1333–1336 (1964)CrossRefGoogle Scholar
  40. 40.
    Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method. Basic formulations and linear problems, vol. 1. McGraw-Hill, London (1989)Google Scholar
  41. 41.
    Liapis, S.: A review of error estimation and adaptivity in the boundary element method. Eng. Anal. Bound. Elem. 14, 315–323 (1994)CrossRefGoogle Scholar
  42. 42.
    Tay, A.O., Stevenson, M.G., de Vahl Davis, G.: Using the finite element method to determine temperature distribution in orthogonal machining. Proc. Inst. Mech. Eng. 188(55), 627–638 (1974)CrossRefGoogle Scholar
  43. 43.
    Muraka, P.D., Barrow, G., Hinduja, S.: Influence of the process variables on the temperature distribution in orthogonal machining using the finite element method. Int. J. Mech. Sci. 21(8), 445–456 (1979)CrossRefMATHGoogle Scholar
  44. 44.
    Moriwaki, T., Sugimura, N., Luan, S.: Combined stress, material flow and heat analysis of orthogonal micromachining of copper. CIRP Annals - Manufact. Tech. 42(1), 75–78 (1993)CrossRefGoogle Scholar
  45. 45.
    Kim, K.W., Sin, H.C.: Development of a thermo-viscoplastic cutting model using finite element method. Int. J. Mach. Tool Manufact. 36(3), 379–397 (1996)CrossRefGoogle Scholar
  46. 46.
    Liu, C.R., Guo, Y.B.: Finite element analysis of the effect of sequential cuts and tool-chip friction on residual stresses in a machined layer. Int. J. Mech. Sci. 42(6), 1069–1086 (2000)CrossRefMATHGoogle Scholar
  47. 47.
    Ceretti, E., Falbohmer, P., Wu, W.T., Altan, T.: Application of 2D FEM to chip formation in orthogonal cutting. J. Mater Process Tech. 59, 169–180 (1996)CrossRefGoogle Scholar
  48. 48.
    Li, K., Gao, X.-L., Sutherland, J.W.: Finite element simulation of the orthogonal metal cutting process for qualitative understanding of the effects of crater wear on the chip formation. J. Mater Process Tech. 127, 309–324 (2002)CrossRefGoogle Scholar
  49. 49.
    Arrazola, P.J., Ugarte, D., Montoya, J., Villar, A., Marya, S.: Finite element modeling of chip formation process with abaqus/explicit. VII Int. Conference Comp., Barcelona (2005)Google Scholar
  50. 50.
    Davies, M.A., Cao, Q., Cooke, A.L., Ivester, R.: On the measurement and prediction of temperature fields in machining AISI 1045 steel. Annals of the CIRP 52, 77–80 (2003)CrossRefGoogle Scholar
  51. 51.
    Adibi-Sedeh, A.H., Vaziri, M., Pednekar, V., Madhavan, V., Ivester, R.: Investigation of the effect of using different material models on finite element simulations of metal cutting. In: 8th CIRP Int Workshop Modeling Mach Operations, Chemnitz, Germany (2005)Google Scholar
  52. 52.
    Shi, J., Liu, C.R.: The influence of material models on finite element simulation of machining. J. Manufact. Sci. Eng. 126, 849–857 (2004)CrossRefGoogle Scholar
  53. 53.
    Ozel, T.: Influence of Friction Models on Finite Element Simulations of Machining. Int. J. Mach. Tool Manufact. 46(5), 518–530 (2006)CrossRefGoogle Scholar
  54. 54.
    Filice, L., Micari, F., Rizzuti, S., Umbrello, D.: A critical analysis on the friction modeling in orthogonal machining. International Journal of Machine Tools and Manufacture 47, 709–714 (2007)CrossRefGoogle Scholar
  55. 55.
    Haglund, A.J., Kishawy, H.A., Rogers, R.J.: An exploration of friction models for the chip-tool interface using an Arbitrary Lagrangian-Eulerian finite element model. Wear 265(3-4), 452–460 (2008)CrossRefGoogle Scholar
  56. 56.
    Mabrouki, T., Deshayes, L., Ivester, R., Regal, J.-F., Jurrens, K.: Material modeling and experimental study of serrated chip morphology. In: Proceedings of 7th CIRP Int Workshop Model. Machin, France, April 4-5 (2004)Google Scholar
  57. 57.
    Coelho, R.T., Ng, E.-G., Elbestawi, M.A.: Tool wear when turning AISI 4340 with coated PCBN tools using finishing cutting conditions. J. Mach. Tool Manufact. 47, 263–272 (2006)CrossRefGoogle Scholar
  58. 58.
    Lorentzon, J., Jarvstrat, N.: Modelling tool wear in cemented carbide machining alloy 718. J. Mach. Tool Manufact. 48, 1072–1080 (2008)CrossRefGoogle Scholar
  59. 59.
    Davim, J.P., Maranhao, C., Jackson, M.J., Cabral, G., Gracio, J.: FEM analysis in high speed machining of aluminium alloy (Al7075-0) using polycrystalline diamond (PCD) and cemented carbide (K10) cutting tools. Int. J. Adv. Manufact. Tech. 39, 1093–1100 (2008)CrossRefGoogle Scholar
  60. 60.
    Attanasio, A., Cerretti, E., Rizzuti, S., Umbrello, D., Micari, F.: 3D finite element analysis of tool wear in machining. CIRP Annals – Manufact. Tech. 57, 61–64 (2008)CrossRefGoogle Scholar
  61. 61.
    ABAQUS Analysis User’s manual. Version 6.7-4 Hibbitt, Karlsson & Sorensen, Inc. (2007)Google Scholar
  62. 62.
    ABAQUS Theory manual, Version 6.7-4 Hibbitt, Karlsson & Sorenson, Inc. (2007)Google Scholar
  63. 63.
    ABAQUS/CAE User’s manual. Version 6.7-4 Hibbitt, Karlsson & Sorensen, Inc. (2007)Google Scholar
  64. 64.
    Wu, H.-C.: Continuum Mechanics and Plasticity. Chapman and Hall/CRC (2004)Google Scholar
  65. 65.
    Johnson, G.R., Cook, W.H.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of 7th Int Symp Ballistics, the Hague, The Netherlands, pp. 541–547 (1983)Google Scholar
  66. 66.
    Umbrello, D., M’Saoubi, R., Outeiro, J.C.: The influence of Johnson–Cook material constants on finite element simulation of machining of AISI 316L steel. Int. J. Mach. Tool Manufact. 47, 462–470 (2007)CrossRefGoogle Scholar
  67. 67.
    Davim, J.P., Maranhao, C.: A study of plastic strain and plastic strain rate in machining of steel AISI 1045 using FEM analysis. Mater Des. 30, 160–165 (2009)CrossRefGoogle Scholar
  68. 68.
    Vaziri, M.R., Salimi, M., Mashayekhi, M.: A new calibration method for ductile fracture models as chip separation criteria in machining. Simulat Model Pract. Theor. 18, 1286–1296 (2010)CrossRefGoogle Scholar
  69. 69.
    Johnson, G.R., Cook, W.H.: Fracture characteristics of three metals subjected to various strains, strains rates, temperatures and pressures. Eng. Fract. Mech. 21(1), 31–48 (1985)CrossRefGoogle Scholar
  70. 70.
    Mabrouki, T., Girardin, F., Asad, M., Regal, J.-F.: Numerical and experimental study of dry cutting for an aeronautic aluminium alloy. Int. J. Mach. Tool Manufact. 48, 1187–1197 (2008)CrossRefGoogle Scholar
  71. 71.
    Mabrouki, T., Rigal, J.: -F A contribution to a qualitative understanding of thermo-mechanical effects during chip formation in hard turning. J. Mater. Process Tech. 176, 214–221 (2006)CrossRefGoogle Scholar
  72. 72.
    Duan, C.Z., Dou, T., Cai, Y.J., Li, Y.Y.: Finite element simulation & experiment of chip formation process during high speed machining of AISI 1045 hardened steel. Int. J. Recent Trend Eng. 1(5), 46–50 (2009)Google Scholar
  73. 73.
    Priyadarshini, A., Pal, S.K., Samantaray, A.K.: A Finite Element Study of Chip Formation Process in Orthogonal Machining. Int . J. Manufact., Mater. Mech. Eng. IGI Global( accepted, in Press, 2011)Google Scholar
  74. 74.
    Shi, G., Deng, X., Shet, C.: A finite element study of the effect of friction in orthogonal metal cutting. Finite Elem. Anal. Des. 38, 863–883 (2002)CrossRefMATHGoogle Scholar
  75. 75.
    Lima, J.G., Avila, R.F., Abrao, A.M., Faustino, M., Davim, J.P.:  Hard turning: AISI 4340 high strength alloy steel and AISI D2 cold work tool steel. J. Mater. Process. Tech. 169, 388–395 (2005)CrossRefGoogle Scholar
  76. 76.
    Priyadarshini, A., Pal, S.K., Samantaray, A.K.: Finite element study of serrated chip formation and temperature distribution in orthogonal machining. J. Mechatron Intell. Manufact. 2(1-2), 53–72 (2010)Google Scholar
  77. 77.
    Wang, M., Yang, H., Sun, Z.-C., Guo, L.-G.: Dynamic explicit FE modeling of hot ring rolling process. Trans. Nonferrous Met. Soc. China 16(6), 1274–1280 (2006)CrossRefGoogle Scholar
  78. 78.
    Litonski, J.: Plastic flow of a tube under adiabatic torsion. Bulletin of Academy of Pol. Science, Ser. Sci. Tech. XXV, 7 (1977)Google Scholar
  79. 79.
    Batra, R.C.: Steady state penetration of thermo-visoplastic targets. Comput Mech. 3, 1–12 (1988)CrossRefMATHGoogle Scholar
  80. 80.
    Usui, E., Shirakashi, T.: Mechanics of machining–from descriptive to predictive theory: On the art of cutting metals-75 Years Later. ASME PED 7, 13–55 (1982)Google Scholar
  81. 81.
    Maekawa, K., Shirakashi, T., Usui, E.: Flow stress of low carbon steel at high temperature and strain rate (Part 2)–Flow stress under variable temperature and variable strain rate. Bulletin Japan Soc Precision Eng 17, 167–172 (1983)Google Scholar
  82. 82.
    Zerilli, F.J., Armstrong, R.W.: Dislocation-mechanics-based constitutive relations for material dynamics calculations. J. Appl. Phys. 61, 1816–1825 (1987)CrossRefGoogle Scholar
  83. 83.
    Oxley, P.L.B.: The mechanics of machining: An analytical approach to assessing machinability. Ellis Horwood Limited, Chichester (1989)Google Scholar
  84. 84.
    Banerjee, B.: The mechanical threshold stress model for various tempers of AISI 4340 steel. Int. J. Solid Struct. 44, 834–859 (2007)CrossRefGoogle Scholar
  85. 85.
    Priyadarshini, A., Pal, S.K., Samantaray, A.K.: On the Influence of the Material and Friction Models on Simulation of Chip Formation Process. J. Mach. Forming Tech. Nova Science (accepted, 2011)Google Scholar
  86. 86.
    Meyer, H.W., Kleponis, D.S.: Modeling the high strain rate behavior of titanium undergoing ballistic impact and penetration. Int. J. Impact Eng. 26(1-10), 509–521 (2001)CrossRefGoogle Scholar
  87. 87.
    Lee, W.S., Lin, C.F.: High temperature deformation behaviour of Ti6Al4V alloy evluated by high strain rate compression tests. J. Mater. Process. Tech. 75, 127–136 (1998)CrossRefGoogle Scholar
  88. 88.
    Baker, M.: The influence of plastic properties on chip formation. Comp. Mater. Sci. 28, 556–562 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Amrita Priyadarshini
    • 1
  • Surjya K. Pal
    • 1
  • Arun K. Samantaray
    • 1
  1. 1.Department of Mechanical EngineeringIndian Institute of TechnologyKharagpurIndia

Personalised recommendations