Extracting Rocks from Mars Images with Data Fields

  • Shuliang Wang
  • Yashen Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7120)

Abstract

In this paper, a novel method is proposed to extract rocks from Martian surface images by using data field. Data field is given to model the interaction between two pixels of a Mars image in the context of the characteristics of Mars images. First, foreground rocks are differed from background information by binarizing image on rough partitioning images. Second, foreground rocks is grouped into clusters by locating the centers and edges of clusters in data field via hierarchical grids. Third, the target rocks are discovered for the Mars Exploration Rover (MER) to keep healthy paths. The experiment with images taken by MER Spirit rover shows the proposed method is practical and potential.

Keywords

Impact Factor Cluster Center Data Object Mars Exploration Rover Original Feature Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thompson, D.R., Castano, R.: Performance comparison of rock detection algorithms for autonomous planetary geology. In: Aerospace, IEEEAC Paper No. #1251. IEEE, USA (2007)Google Scholar
  2. 2.
    Wagstaff, K.L., et al.: Science-based region-of-interest image compression. In: 35th Lunar and Planetary Science Conference, League City, Texas, USA (2004)Google Scholar
  3. 3.
    Li, R., et al.: Rock modeling and matching for autonomous long-range Mars rover localization. Journal of Field Robotics 24(3), 187–203 (2007)CrossRefGoogle Scholar
  4. 4.
    Gor, V., et al.: Autonomous rock detection for mars terrain. In: Space 2001. American Institute of Aeronautics and Astronautics, Albuquerque (2001)Google Scholar
  5. 5.
    Adelmann, H.G.: Butterworth equations for homomorphic filtering of images. Computers in Biology and Medicine 28(2), 169–181 (1998)CrossRefGoogle Scholar
  6. 6.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1988)CrossRefMATHGoogle Scholar
  7. 7.
    Ji, L., Yan, H.: Attractable snakes based on the greedy algorithm for contour extraction. Pattern Recognition 35(4), 791–806 (2002)CrossRefMATHGoogle Scholar
  8. 8.
    Yuen, P.C., Feng, G.C., Zhou, J.P.: A contour detection method: initialization and contour model. Pattern Recognition Letters 20(2), 141–148 (1999)CrossRefMATHGoogle Scholar
  9. 9.
    Gulick, V.C., et al.: Autonomous image analyses during the 1999 Marsokhod rover field test. Journal of Geophysical Research 106(E4), 7745–7763 (2001)CrossRefGoogle Scholar
  10. 10.
    Thompson, D.R., et al.: Data mining during rover traverse: from images to geologic signatures. In: 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space, USA (2005)Google Scholar
  11. 11.
    Song, Y.H., Shan, J.: Automated rock segmentation for Mars Exploration Rover imagery. In: Lunar and Planetary Science Conference XXXIX, Houston, USA (2008) Google Scholar
  12. 12.
    Giachetta, G., Mangiarotti, L., Sardanashvily, G.: Advanced Classical Field Theory. World Scientific Publishing Co. Pte. Ltd (2009) Google Scholar
  13. 13.
    Wang, S.L., Gan, W.Y., Li, D.Y., Li, D.R.: Data Field for Hierarchical Clustering. International Journal of Data Warehousing and Mining 7(4), 43–63 (2011)CrossRefGoogle Scholar
  14. 14.
    Li, D.R., Wang, S.L., Li, D.Y.: Spatial Data Mining theories and applications. Science Press, Beijing (2006)Google Scholar
  15. 15.
    Gonzalez, R.C., Woods, R.E.: Digital image processing, 3rd edn. Pearson Education, Upper Saddle River (2008)Google Scholar
  16. 16.
    Karypis, G., Han, E.H., Kumar, V.: Chameleon: Hierarchical Clustering Using Dynamic Modeling. Computer 32(8), 68–75 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Shuliang Wang
    • 1
  • Yashen Chen
    • 1
  1. 1.International School of SoftwareWuhan UniversityWuhanChina

Personalised recommendations