Micro-Diagnostics: X-ray and Synchrotron Techniques

Chapter

Abstract

Beyond classical X-ray techniques are used for the purpose of preferably short-term applications, but some supplementary X-ray and synchrotron techniques for higher resolution microdiagnostics take advantage of scattering effects. In contrast to directly imaging methods their resolution is only limited by the diffraction limit of the X-ray wavelength, far below the atomic dimensions. These techniques of scanning topography and refraction synchrotron tomography may permit the systematic diagnostics for finding and exploiting structure/property relations like correlations among atomic, nano and microstructures with macroscopic properties. Their basic advantage over microscopic techniques is their potential for the non-destructive characterisation of materials, far from invasive sample treatments. They combine scattering and spatial resolution.

Keywords

Carbon Fibre Fibre Orientation Crack Interface Small Angle Scattering Rotation Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Lang, A.R.: Topography, x-ray diffraction. In: Clark, G.L. (ed.) The Encyclopedia of X-rays and Gamma Rays, vol. 1053. Reinhold Publishing Corporation, New York (1963)Google Scholar
  2. 2.
    Debye, P.: Zerstreuung von Röntgenstrahlen. Ann. Physik. 46, 809 (1915)Google Scholar
  3. 3.
    Porod, G.: Die Röntgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen I. Teil. Kolloid-Zeitschrift und Zeitschrift für Polymere 124(2), 83–114 (1951)Google Scholar
  4. 4.
    Guinier, A., Fournet, G.: Small angle scattering of x-rays. Chapman & Hall, London (1955)Google Scholar
  5. 5.
    Hentschel, M.P., Harbich, K.-W., Lange, A.: Non-destructive evaluation of single fiber debonding by x-ray refraction. NDT and E Int. 27, 275–280 (1994)CrossRefGoogle Scholar
  6. 6.
    Hentschel, M.P., Hosemann, R., Lange, A., Uther, B., Brückner, R.: Röntgenkleinwinkelbrechung an Metalldrähten, Glasfäden und hartelastischem Polypropylen. Acta Cryst. A 43, 506–513 (1987)CrossRefGoogle Scholar
  7. 7.
    Hentschel, M.P., Lange, A., Harbich, K.-W., Ekenhorst, D., Schors, J.: Röntgentopographie der Faser- und Polymerorientierung. Materialprüfung/materials testing. 39, 121–123 (1997)Google Scholar
  8. 8.
    Hentschel, M.P., Lange, A., Schors, J., de Rooij, T., Judd, M.D.: Fibre direction and content in composites—x-ray rotation topography of satellite reflectors. Materialprufung 43(6), 248–253 (2001)Google Scholar
  9. 9.
    Compton, A.H., Allison, S.K.: X-rays in theory and experiment. Macmillan, London (1935)Google Scholar
  10. 10.
    Harbich, K.-W., Hentschel, M.P., Schors, J.: X-ray refraction characterization of non-metallic materials. NDT& E Int. 34, 297 (2001)CrossRefGoogle Scholar
  11. 11.
    Tzschichholz, G., Steinborn, G., Hentschel, M.P., Lange, A., Klobes, P.: Characterisation of porous titania yttrium oxide compounds by mercury intrusion porosimetry and X-ray refractometry. J. Porous Mater. 18(1), 83–88 (2011). doi:http://dx.doi.org/10.1007/s10934-010-9358-4 Google Scholar
  12. 12.
    Görner, W., Hentschel, M.P., Muller, B.R., Riesemeier, H., Krumrey, M., Ulm, G., Diete, W., Klein, U., Frahm, R.: BAMline: the first hard x-ray beamline at BESSY II. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 467, 703–706 (2001)CrossRefGoogle Scholar
  13. 13.
    Rack, A., Zabler, S., Müller, B.R., Riesemeier, H., Weidemann, G., Lange, A., Goebbels, J., Hentschel, M., Görner, W.: High resolution synchrotron-based radiography and tomography using hard x-rays at the BAMline (BESSY II). Nucl. Instrum. Methods Phys. Res. Sect. A 586, 327–344 (2008)CrossRefGoogle Scholar
  14. 14.
    Müller, B.R., Lange, A., Harwardt, M., Hentschel, M.P., Illerhaus, B., Goebbels, J., Bamberg, J., Heutling, F.: Refraction computed tomography—application to metal matrix composites. Materialprufung 46(6), 314–319 (2004)Google Scholar
  15. 15.
    Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging (1988) http://www.slaney.org/pct/pct-toc.html
  16. 16.
    Bragg, W.H., Bragg, W.L.: The reflection of x-rays by crystals. Proc. R. Soc. Lond. Series a-Containing Pap. Math. Phys. Charact. 88(605), 428–438 (1913)CrossRefGoogle Scholar
  17. 17.
    Antunes, A., Honnicke, M.G., Safatle, A.M.V., Cusatis, C., Moraes Barros, P.S., Morelhao, S.L.: Diffraction enhanced x-ray imaging of mammals crystalline lens. Nucl. Instrum. Methods Phys. Res., Sect. B 238(1–4), 28–31 (2005)CrossRefGoogle Scholar
  18. 18.
    Chapman, D., Thomlinson, W., Johnston, R.E., Washburn, D., Pisano, E., Gmur, N., Zhong, Z., Menk, R., Arfelli, F., Sayers, D.: Diffraction enhanced x-ray imaging. Phys. Med. Biol. 42(11), 2015–2025 (1997)CrossRefGoogle Scholar
  19. 19.
    Mollenhauer, J., Aurich, M.E., Zhong, Z., Muehleman, C., Cole, A.A., Hasnah, M., Oltulu, O., Kuettner, K.E., Margulis, A., Chapman, L.D.: Diffraction-enhanced x-ray imaging of articular cartilage. Osteoarthritis Cartilage 10(3), 163–171 (2002)CrossRefGoogle Scholar
  20. 20.
    Muehleman, C., Li, J., Zhong, Z.: Preliminary study on diffraction enhanced radiographic imaging for a canine model of cartilage damage. Osteoarthritis Cartilage 14(9), 882–888 (2006)CrossRefGoogle Scholar
  21. 21.
    Rocha, H.S., Pereira, G.R., Faria, P., Kellermann, G., Mazzaro, I., Tirao, G., Giles, C., Lopes, R.T.: Diffraction-enhanced imaging microradiography applied in breast samples. Eur. J. Radiol. (In Press) corrected proof (2008)Google Scholar
  22. 22.
    Sun, Y., Zhu, P., Yu, J., Chen, X.: Computerized tomography based on DEI refraction information. Comput. Med. Imaging Graph. 31(6), 383–389 (2007)CrossRefGoogle Scholar
  23. 23.
    Zhong, Z., Thomlinson, W., Chapman, D., Sayers, D.: Implementation of diffraction-enhanced imaging experiments: at the NSLS and APS. Nucl. Instrum. Methods Phys. Res. Sect. A 450(2–3), 556–567 (2000)CrossRefGoogle Scholar
  24. 24.
    Coan, P., Mollenhauer, J., Wagner, A., Muehleman, C., Bravin, A.: Analyzer-based imaging technique in tomography of cartilage and metal implants: A study at the ESRF. Eur. J. Radiol. (In Press) corrected proof (2008)Google Scholar
  25. 25.
    Issever, A.S., Diederichs, G., Majumdar, S., Rogalla, P., Hamm, B.K., Lange, A., Harwardt, M., Hentschel, M.P., Mueller, B.R.: Analyser-based tomography images of cartilage. J. Synchrotron. Rad. 15(5), 525–527 (2008). doi: 10.1107/S0909049508014829 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Bernd Randolf Müller
    • 1
  • Manfred Paul Hentschel
    • 1
  1. 1.Division 8.5 Micro NDEBundesanstalt für Materialforschung und –prüfungBerlinGermany

Personalised recommendations