Asymmetric Pareto-adaptive Scheme for Multiobjective Optimization

  • Siwei Jiang
  • Jie Zhang
  • Yew Soon Ong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7106)

Abstract

A core challenge of Multiobjective Evolutionary Algorithms (MOEAs) is to attain evenly distributed Pareto optimal solutions along the Pareto front. In this paper, we propose a novel asymmetric Pareto-adaptive (apa) scheme for the identification of well distributed Pareto optimal solutions based on the geometrical characteristics of the Pareto front. The apa scheme applies to problem with symmetric and asymmetric Pareto fronts. Evaluation on multiobjective problems with Pareto fronts of different forms confirms that apa improves both convergence and diversity of the classical decomposition-based (MOEA/D) and Pareto dominance-based MOEAs (paε-MyDE).

Keywords

Multiobjective Optimization Hypervolume Pareto-adaptive 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coello, C., et al.: Evolutionary multi-objective optimization: a historical view of the field. IEEE Comput. Intell. Mag. 1(1), 28–36 (2006)CrossRefGoogle Scholar
  2. 2.
    Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)CrossRefGoogle Scholar
  3. 3.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)CrossRefGoogle Scholar
  4. 4.
    Durillo, J.J., Nebro, A.J., Alba, E.: The jmetal framework for multi-objective optimization: Design and architecture. IEEE Congr. Evol. Comput., 1–8 (2010)Google Scholar
  5. 5.
    Bader, J., Zitzler, E.: HypE: An algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19(1), 45–76 (2011)CrossRefGoogle Scholar
  6. 6.
    Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary multiobjective optimization. Evol. Comput. 10(3), 263–282 (2002)CrossRefGoogle Scholar
  7. 7.
    Hernlandez-Dlaz, A.G., Santana-Quintero, L.V., Coello Coello, C.A., Molina, J.: Paretoadaptive ε-dominance. Evol. Comput. 15(4), 493–517 (2007)CrossRefGoogle Scholar
  8. 8.
    Lim, D., Jin, Y., Ong, Y.S., Sendhoff, B.: Generalizing surrogate-assisted evolutionary computation. IEEE Trans. Evol. Comput. 14(3), 329–355 (2010)CrossRefGoogle Scholar
  9. 9.
    Ong, Y.S., Lim, M.H., Zhu, N., Wong, K.W.: Classification of adaptive memetic algorithms: A comparative study. IEEE Trans. Syst., Man, Cybern., Part B: Cybernetics 36(1), 141–152 (2006)CrossRefGoogle Scholar
  10. 10.
    Ong, Y.S., Lim, M.H., Chen, X.S.: Research frontier: memetic computation-past, present & future. IEEE Comput. Intell. Mag. 5(2), 24–31 (2010)CrossRefGoogle Scholar
  11. 11.
    Acampora, G., Loia, V., Gaeta, M.: Exploring e-learning knowledge through ontological memetic agents. IEEE Comput. Intell. Mag. 5(2), 66–77 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Siwei Jiang
    • 1
  • Jie Zhang
    • 1
  • Yew Soon Ong
    • 1
  1. 1.School of Computer EngineeringNanyang Technology UniversitySingapore

Personalised recommendations