Advertisement

Evaluating the Student Activity Meter: Two Case Studies

  • Sten Govaerts
  • Katrien Verbert
  • Erik Duval
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7048)

Abstract

In the Technology Enhanced Learning (TEL) domain, visualizations are attracting increased interest. In this paper, we present the Student Activity Meter that visualizes learner activities within online learning environments for learners and teachers to help increase awareness and to support self-reflection. We present evaluation results of two case studies with teachers, learning analytics students and experts. Results from teachers show that the visualizations can assist in creating awareness, understanding of student resource use and student time spending behavior. SAM’s three visualizations were perceived as equally useful, but for different tasks. The evaluation participants also identified new metrics to extend our current set and prioritized new visualization ideas.

Keywords

Visualization Self-reflection Awareness Case Study 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1st International Conference on Learning Analytics and Knowledge 2011 (February 2011), https://tekri.athabascau.ca/analytics/
  2. 2.
    Allendoerfer, K.R.: How information visualization systems change users’ understandings of complex data. Ph.D. thesis, Drexel University (2010)Google Scholar
  3. 3.
    Blakelock, J., Smith, T.E.: Distance learning: From multiple snapshots, a composite portrait. Computers and Composition 23(1), 139–161 (2006)CrossRefGoogle Scholar
  4. 4.
    Dawson, S., Bakharia, A., Heathcote, E.: Snapp: Realising the affordances of real-time SNA within networked learning environments. In: Proceedings of the 7th International Conference on Networked Learning 2010, pp. 125–133 (2010)Google Scholar
  5. 5.
    Govaerts, S., Verbert, K., Klerkx, J., Duval, E.: Visualizing Activities for Self-Reflection and Awareness. In: Luo, X., Spaniol, M., Wang, L., Li, Q., Nejdl, W., Zhang, W. (eds.) ICWL 2010. LNCS, vol. 6483, pp. 91–100. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    van Harmelen, M.: Personal learning environments. In: ICALT 2006: Proc. of the 6th IEEE Int. Conf. on Advanced Learning Technologies, pp. 815–816. IEEE Computer Society (2006)Google Scholar
  7. 7.
    Janssen, J., Erkens, G., Kanselaar, G., Jaspers, J.G.M.: Visualization of participation: Does it contribute to successful computer-supported collaborative learning? Computers & Education 49(4), 1037–1065 (2007)CrossRefGoogle Scholar
  8. 8.
    Keith, T.Z.: Time spent on homework and high school grades: A large-sample path analysis. Journal of Educational Psychology 74(2), 248–253 (1982)CrossRefGoogle Scholar
  9. 9.
    Kelly, A.: Design research in education: Yes, but is it methodological? Journal of the Learning Sciences 13(1), 115–128 (2004)CrossRefGoogle Scholar
  10. 10.
    Larusson, J.A., Alterman, R.: Visualizing student activity in a wiki-mediated co-blogging exercise. In: CHI 2009: Proceedings of 27th International Conference on Human Factors in Computing Systems, pp. 4093–4098. ACM (2009)Google Scholar
  11. 11.
    Rath, A.S., Devaurs, D., Lindstaedt, S.N.: UICO: an ontology-based user interaction context model for automatic task detection on the computer desktop. In: Proc. of the 1st Workshop on Context, Information and Ontologies, CIAO 2009, pp. 8:1–8:10. ACM (2009)Google Scholar
  12. 12.
    Schmitz, H.-C., Scheffel, M., Friedrich, M., Jahn, M., Niemann, K., Wolpers, M.: CAMera for PLE. In: Cress, U., Dimitrova, V., Specht, M. (eds.) EC-TEL 2009. LNCS, vol. 5794, pp. 507–520. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Siirtola, H., Laivo, T., Heimonen, T., Raiha, K.-J.: Visual perception of parallel coordinate visualizations. In: IV 2009: Proc. of 13th Int. Conf. of Info. Visual, pp. 3–9. IEEE (2009)Google Scholar
  14. 14.
    Sinclair, J., Cardew-Hall, M.: The folksonomy tag cloud: when is it useful? Journal of Information Science 34, 15–29 (2008)CrossRefGoogle Scholar
  15. 15.
    Soller, A., Martínez-Monés, A., Jermann, P., Muehlenbrock, M.: From mirroring to guiding: A review of state of the art technology for supporting collaborative learning. I. J. Artificial Intelligence in Education 15(4), 261–290 (2005)Google Scholar
  16. 16.
    Thomas, J.J., Cook, K.A.: Illuminating the Path: The Research and Development Agenda for Visual Analytics. National Visualization and Analytics Ctr (2005)Google Scholar
  17. 17.
    Wolpers, M., Martin, G., Najjar, J., Duval, E.: Attention metadata in knowledge and learning management. In: Proceedings of I-Know 2006: 6th International Conference on Knowledge Management, pp. 1–8 (2006)Google Scholar
  18. 18.
    Zhang, H., Almeroth, K., Knight, A., Bulger, M., Mayer, R.: Moodog: Tracking students’ online learning activities. In: Proc. of World Conf. on Educational Multimedia, Hypermedia and Telecomm. 2007, pp. 4415–4422. AACE, Vancouver (2007)Google Scholar
  19. 19.
    Zimmerman, B.J.: Becoming a self-regulated learner: An overview. Theory Into Practice 41(2), 65–70 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sten Govaerts
    • 1
  • Katrien Verbert
    • 1
  • Erik Duval
    • 1
  1. 1.Dept. Computer ScienceKatholieke Universiteit LeuvenHeverleeBelgium

Personalised recommendations