Current Antipsychotics pp 299-337

Part of the Handbook of Experimental Pharmacology book series (HEP, volume 212)

Imaging as Tool to Investigate Psychoses and Antipsychotics

Chapter

Abstract

The results of imaging studies have played an important role in the formulation of hypotheses regarding the etiology of psychosis and schizophrenia, as well as in our understanding of the mechanisms of action of antipsychotics. Since this volume is primarily directed to molecular aspects of psychosis and antipsychotics, only the results of molecular imaging techniques addressing these topics will be discussed here.

One of the most consistent findings of molecular imaging studies in schizophrenia is an increased uptake of DOPA in the striatum, which may be interpreted as an increased synthesis of L-DOPA. Also, several studies reported an increased release of dopamine induced by amphetamine in schizophrenia patients. These findings played an important role in reformulating the dopamine hypothesis of schizophrenia. To study the roles of the neurotransmitters γ-aminobutyric acid (GABA) and glutamate in schizophrenia, SPECT as well as MR spectroscopy have been used. The results of preliminary SPECT studies are consistent with the hypothesis of NMDA receptor dysfunction in schizophrenia. Regarding the GABA deficit hypothesis of schizophrenia, imaging results are inconsistent. No changes in serotonin transporters were demonstrated in imaging studies in schizophrenia, but studies of several serotonin receptors showed conflicting results. The lack of selective radiotracers for muscarinic receptors may have hampered examination of this system in schizophrenia as well as its role in the induction of side effects of antipsychotics. Interestingly, preliminary molecular imaging studies on the cannabinoid-1 receptor and on neuroinflammatory processes in schizophrenia have recently been published. Finally, a substantial number of PET/SPECT studies have examined the occupancy of receptors by antipsychotics and an increasing number of studies is now focusing on the effects of these drugs using techniques like spectroscopy and pharmacological MRI.

Keywords

SPECT PET MRI Spectroscopy Neurotransmitters Receptors Psychosis Schizophrenia Neuroimaging Antipsychotics 

References

  1. Aasen I, Kumari V, Sharma T (2005) Effects of rivastigmine on sustained attention in schizophrenia: an fMRI study. J Clin Psychopharmacol 25:311–317PubMedCrossRefGoogle Scholar
  2. Abbott A (2010) Schizophrenia: the drug deadlock. Nature 468:158–159PubMedCrossRefGoogle Scholar
  3. Abi-Dargham A, Gandelman MS, DeErausquin GA, Zea-Ponce Y, Zoghbi SS, Baldwin RM, Laruelle M, Charney DS, Hoffer PB, Neumeyer JL, Innis RB (1996) Imaging of dopamine transporters in human brain with iodine-123-fluoroalkyl analogs of beta-CIT. J Nucl Med 37:1129–1133PubMedGoogle Scholar
  4. Abi-Dargham A, Gil R, Krystal J, Baldwin RM, Seibyl JP, Bowers M, van Dyck CH, Charney DS, Innis RB, Laruelle M (1998) Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am J Psychiatry 155:761–767PubMedGoogle Scholar
  5. Abi-Dargham A, Laruelle M, Krystal J, D’Souza C, Zoghbi S, Baldwin RM, Seibyl J, Mawlawi O, de Erasquin G, Charney D, Innis RB (1999) No evidence of altered in vivo benzodiazepine receptor binding in schizophrenia. Neuropsychopharmacology 20:650–661PubMedCrossRefGoogle Scholar
  6. Abi-Dargham A, Rodenhiser J, Printz D, Zea-Ponce Y, Gil R, Kegeles LS, Weiss R, Cooper TB, Mann JJ, Van Heertum RL, Gorman JM, Laruelle M (2000) Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci USA 97:8104–8109PubMedCrossRefGoogle Scholar
  7. Abi-Dargham A, Mawlawi O, Lombardo I, Gil R, Martinez D, Huang Y, Hwang DR, Keilp J, Kochan L, Van Heertum R, Gorman JM, Laruelle M (2002) Prefrontal dopamine D1 receptors and working memory in schizophrenia. J Neurosci 22:3708–3719PubMedGoogle Scholar
  8. Abi-Dargham A, Kegeles LS, Zea-Ponce Y, Mawlawi O, Martinez D, Mitropoulou V, O’Flynn K, Koenigsberg HW, Van Heertum R, Cooper T, Laruelle M, Siever LJ (2004) Striatal amphetamine-induced dopamine release in patients with schizotypal personality disorder studied with single photon emission computed tomography and [123I]iodobenzamide. Biol Psychiatry 55:1001–1006PubMedCrossRefGoogle Scholar
  9. Abi-Dargham A (2007) Alterations of serotonin transmission in schizophrenia. Int Rev Neurobiol 78:133–164PubMedCrossRefGoogle Scholar
  10. Abi-Dargham A, van de Giessen E, Slifstein M, Kegeles LS, Laruelle M (2009) Baseline and amphetamine-stimulated dopamine activity are related in drug-naïve schizophrenic subjects. Biol Psychiatry 65:1091–1093PubMedCrossRefGoogle Scholar
  11. Abi-Dargham A, Xu X, Thompson JL, Gil R, Kegeles LS, Urban NB, Narendran R, Hwang DR, Laruelle M, Slifstein M (2012) Increased prefrontal cortical D1 receptors in drug naive patients with schizophrenia: a PET study with [11C]NNC112. J Psychopharmacol 26(6):794–805PubMedCrossRefGoogle Scholar
  12. Acton PD, Pilowsky LS, Costa DC, Ell PJ (1997) Multivariate cluster analysis of dynamic iodine-123 iodobenzamide SPET dopamine D2 receptor images in schizophrenia. Eur J Nucl Med 24:111–118PubMedCrossRefGoogle Scholar
  13. Allen P, Chaddock CA, Howes OD, Egerton A, Seal ML, Fusar-Poli P, Valli I, Day F, McGuire PK (2011) Abnormal relationship between medial temporal lobe and subcortical dopamine function in people with an ultra high risk for psychosis. Schizophr Bull (in press)Google Scholar
  14. Andersen PH, Grønvald FC, Hohlweg R, Hansen LB, Guddal E, Braestrup C, Nielsen EB (1992) NNC-112, NNC-687 and NNC-756, new selective and highly potent dopamine D1 receptor antagonists. Eur J Pharmacol 219:45–52PubMedCrossRefGoogle Scholar
  15. Asai Y, Takano A, Ito H, Okubo Y, Matsuura M, Otsuka A, Takahashi H, Ando T, Ito S, Arakawa R, Asai K, Suhara T (2008) GABAA/benzodiazepine receptor binding in patients with schizophrenia using [11C]Ro15–4513, a radioligand with relatively high affinity for 5 subunit. Schizophr Res 99:333–340PubMedCrossRefGoogle Scholar
  16. Bartha R, Williamson PC, Drost DJ, Malla A, Carr TJ, Cortese L, Canaran G, Rylett RJ, Neufeld RW (1997) Measurement of glutamate and glutamine in the medial prefrontal cortex of never-treated schizophrenic patients and healthy controls by proton magnetic resonance spectroscopy. Arch Gen Psychiatry 54:959–965PubMedCrossRefGoogle Scholar
  17. Benes FM, Vincent SL, Alsterberg G, Bird ED, SanGiovanni JP (1992) Increased GABAa receptor binding in superficial layers of cingulate cortex in schizophrenics. J Neurosci 12:924–929PubMedGoogle Scholar
  18. Bloemen OJN, de Koning MB, Boot HJG, Booij J, van Amelsvoort TAMJ (2008) Challenge and therapeutic studies using alpha-methyl-para-tyrosine (AMPT) in neuropsychiatric disorders: a review. Cent Nerv Syst Agents Med Chem 8:249–256Google Scholar
  19. Bloemen OJN, Gleich T, de Koning MB, da Silva AF, de Haan L, Linszen DH, Booij J, van Amelsvoort TA (2011) Hippocampal glutamate levels and striatal dopamine D2/3 receptor occupancy in subjects at ultra high risk of psychosis. Biol Psychiatry 70:e1–e2PubMedCrossRefGoogle Scholar
  20. Bollini P, Pampallona S, Orza MJ, Adams ME, Chalmers TC (1994) Antipsychotic drugs: is more worse? A meta-analysis of the published randomised control trials. Psychol Med 24:307–316PubMedCrossRefGoogle Scholar
  21. Booij J, de Jong J, de Bruin K, Knol R, de Win MM, van Eck-Smit BL (2007) Quantification of striatal dopamine transporters with 123I-FP-CIT SPECT is influenced by the selective serotonin reuptake inhibitor paroxetine: a double-blind, placebo-controlled, crossover study in healthy control subjects. J Nucl Med 48:359–366PubMedGoogle Scholar
  22. Booij J, Kemp P (2008) Dopamine transporter imaging with [123I]FP-CIT SPECT: potential effects of drugs. Eur J Nucl Med Mol Imaging 35:424–438PubMedCrossRefGoogle Scholar
  23. Boot E, Booij J, Zinkstok J, Abeling N, de Haan L, Baas F, Linszen D, van Amelsvoort T (2008) Disrupted dopaminergic neurotransmission in 22q11 deletion syndrome. Neuropsychopharmacology 33:1252–1258PubMedCrossRefGoogle Scholar
  24. Boot E, Booij J, Zinkstok J, de Haan L, Linszen D, Baas F, van Amelsvoort T (2010) Striatal D2 receptor binding in 22q11 deletion syndrome: an [123I]IBZM SPECT study. J Psychopharmacol 24:1525–1531PubMedCrossRefGoogle Scholar
  25. Boot E, Booij J, Zinkstok J, Baas F, Swillen A, Owen MJ, Murphy DG, Murphy KC, Linszen DH, Van Amelsvoort TA (2011) COMT Val158Met genotype and striatal D2/3 receptor binding in adults with 22q11 deletion syndrome. Synapse 65:967–970PubMedCrossRefGoogle Scholar
  26. Bray NJ, Leweke FM, Kapur S, Meyer-Lindenberg A (2010) The neurobiology of schizophrenia: new leads and avenues for treatment. Curr Opin Neurobiol 20:810–815PubMedCrossRefGoogle Scholar
  27. Breier A, Su TP, Saunders R, Kolachana BS, de Bartolomeis A, Weinberger DR, Weisenfeld N, Malhotra AK, Eckelman WC, Pickar D (1997) Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci USA 94:2569–2574PubMedCrossRefGoogle Scholar
  28. Bressan RA, Erlandsson K, Stone JM, Mulligan RS, Krystal JH, Ell PJ, Pilowsky LS (2005) Impact of schizophrenia and chronic antipsychotic treatment on [123I]CNS-1261 binding to N-methyl-D-aspartate receptors in vivo. Biol Psychiatry 58:41–46PubMedCrossRefGoogle Scholar
  29. Brugger S, Davis JM, Leucht S, Stone JM (2011) Proton magnetic resonance spectroscopy and illness stage in schizophrenia–a systematic review and meta-analysis. Biol Psychiatry 69:495–503PubMedCrossRefGoogle Scholar
  30. Brunelin J, d’Amato T, Van Os J, Costes N, Suaud Chagny MF, Saoud M (2010) Increased left striatal dopamine transmission in unaffected siblings of schizophrenia patients in response to acute metabolic stress. Psychiatry Res 181:130–135PubMedCrossRefGoogle Scholar
  31. Buchsbaum MS, Christian BT, Lehrer DS, Narayanan TK, Shi B, Mantil J, Kemether E, Oakes TR, Mukherjee J (2006) D2/D3 dopamine receptor binding with [F-18]fallypride in thalamus and cortex of patients with schizophrenia. Schizophr Res 85:232–244PubMedCrossRefGoogle Scholar
  32. Buckholtz JW, Treadway MT, Cowan RL, Woodward ND, Li R, Ansari MS, Baldwin RM, Schwartzman AN, Shelby ES, Smith CE, Kessler RM, Zald DH (2010) Dopaminergic network differences in human impulsivity. Science 329:532PubMedCrossRefGoogle Scholar
  33. Burger C, Deschwanden A, Ametamey S, Johayem A, Mancosu B, Wyss M, Hasler G, Buck A (2010) Evaluation of a bolus/infusion protocol for 11C-ABP688, a PET tracer for mGluR5. Nucl Med Biol 37:845–851PubMedCrossRefGoogle Scholar
  34. Busatto GF, Pilowsky LS, Costa DC, Ell PJ, David AS, Lucey JV, Kerwin RW (1997) Correlation between reduced in vivo benzodiazepine receptor binding and severity of psychotic symptoms in schizophrenia. Am J Psychiatry 154:56–63PubMedGoogle Scholar
  35. Callicott JH, Egan MF, Bertolino A, Mattay VS, Langheim FJ, Frank JA, Weinberger DR (1998) Hippocampal N-acetyl aspartate in unaffected siblings of patients with schizophrenia: a possible intermediate neurobiological phenotype. Biol Psychiatry 44:941–950PubMedCrossRefGoogle Scholar
  36. Canfield DR, Spealman RD, Kaufman MJ, Madras BK (1990) Autoradiographic localization of cocaine binding sites by [3H]CFT ([3H]WIN 35,428) in the monkey brain. Synapse 6:189–195PubMedCrossRefGoogle Scholar
  37. Cannon TD, Cadenhead K, Cornblatt B, Woods SW, Addington J, Walker E, Seidman LJ, Perkins D, Tsuang M, McGlashan T, Heinssen R (2008) Prediction of psychosis in youth at high clinical risk: a multisite longitudinal study in North America. Arch Gen Psychiatry 65:28–37PubMedCrossRefGoogle Scholar
  38. Celen S, Koole M, De Angelis M, Sannen I, Chitneni SK, Alcazar J, Dedeurwaerdere S, Moechars D, Schmidt M, Verbruggen A, Langlois X, Van Laere K, Andrés JI, Bormans G (2010) Preclinical evaluation of 18F-JNJ41510417 as a radioligand for PET imaging of phosphodiesterase-10A in the brain. J Nucl Med 51:1584–1591PubMedCrossRefGoogle Scholar
  39. Chou YH, Halldin C, Farde L (2006) Clozapine binds preferentially to cortical D1-like dopamine receptors in the primate brain: a PET study. Psychopharmacology (Berl) 185:29–35CrossRefGoogle Scholar
  40. Dao-Castellana MH, Paillere-Martinot ML, Hantraye P, Attar-Lévy D, Rémy P, Crouzel C, Artiges E, Féline A, Syrota A, Martinot JL (1997) Presynaptic dopaminergic function in the striatum of schizophrenic patients. Schizophr Res 23:167–174PubMedCrossRefGoogle Scholar
  41. da Silva-Alves F, Figee M, van Amelsvoort T, Veltman D, de Haan L (2008) The revised dopamine hypothesis of schizophrenia: evidence from pharmacological MRI studies with atypical antipsychotic medication. Psychopharmacol Bull 41:121–132PubMedGoogle Scholar
  42. da Silva Alves F, Boot E, Schmitz N, Nederveen A, Vorstman J, Lavini C, Pouwels PJ, de Haan L, Linszen D, van Amelsvoort T (2011) Proton magnetic resonance spectroscopy in 22q11 deletion syndrome. PLoS One 6(6):e21685PubMedCrossRefGoogle Scholar
  43. de Haan L, Lavalaye J, Linszen D, Dingemans PM, Booij J (2000) Subjective experience and striatal dopamine D2 receptor occupancy in patients with schizophrenia stabilized by olanzapine or risperidone. Am J Psychiatry 157:1019–1020PubMedCrossRefGoogle Scholar
  44. de Haan L, Lavalaye J, Booij J, Linszen D (2005) Comfort, self-confidence, safety, and dopamine D2 receptor occupancy by antipsychotics. Am J Psychiatry 162:1544–1545PubMedCrossRefGoogle Scholar
  45. de Haan L, van Bruggen M, Lavalaye J, Booij J, Dingemans PM, Linszen D (2003) Subjective experience and D2 receptor occupancy in patients with recent-onset schizophrenia treated with low-dose olanzapine or haloperidol: a randomized, double-blind study. Am J Psychiatry 160:303–309PubMedCrossRefGoogle Scholar
  46. de Haan L, Booij J, Lavalaye J, van Amelsvoort T, Linszen D (2006) Occupancy of dopamine D2 receptors by antipsychotic drugs is related to nicotine addiction in young patients with schizophrenia. Psychopharmacology (Berl) 183:500–505CrossRefGoogle Scholar
  47. de Win MM, Habraken JB, Reneman L, van den Brink W, den Heeten GJ, Booij J (2005) Validation of [123I]beta-CIT SPECT to assess serotonin transporters in vivo in humans: a double-blind, placebo-controlled, crossover study with the selective serotonin reuptake inhibitor citalopram. Neuropsychopharmacology 30:996–1005PubMedCrossRefGoogle Scholar
  48. Deschwanden A, Karolewicz B, Feyissa AM, Treyer V, Ametamey SM, Johayem A, Burger C, Auberson YP, Sovago J, Stockmeier CA, Buck A, Hasler G (2011) Reduced metabotropic glutamate receptor 5 density in major depression determined by [11C]ABP688 PET and postmortem study. Am J Psychiatry 168:727–734PubMedCrossRefGoogle Scholar
  49. Dollé F, Luus C, Reynolds A, Kassiou M (2009) Radiolabelled molecules for imaging the translocator protein (18 kDa) using positron emission tomography. Curr Med Chem 16:2899–2923PubMedCrossRefGoogle Scholar
  50. Doorduin J, de Vries EF, Willemsen AT, de Groot JC, Dierckx RA, Klein HC (2009) Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med 50:1801–1807PubMedCrossRefGoogle Scholar
  51. Dresel SH, Kung MP, Huang X, Plössl K, Hou C, Shiue CY, Karp J, Kung HF (1999) In vivo imaging of serotonin transporters with [99mTc]TRODAT-1 in nonhuman primates. Eur J Nucl Med 26:342–347PubMedCrossRefGoogle Scholar
  52. Ekelund J, Slifstein M, Narendran R, Guillin O, Belani H, Guo NN, Hwang Y, Hwang DR, Abi-Dargham A, Laruelle M (2007) In vivo DA D1 receptor selectivity of NNC 112 and SCH 23390. Mol Imaging Biol 9:117–125PubMedCrossRefGoogle Scholar
  53. Elkashef AM, Doudet D, Bryant T, Cohen RM, Li SH, Wyatt RJ (2000) 6-(18)F-DOPA PET study in patients with schizophrenia. Positron emission tomography. Psychiatry Res 100:1–11PubMedCrossRefGoogle Scholar
  54. Erlandsson K, Bressan RA, Mulligan RS, Gunn RN, Cunningham VJ, Owens J, Wyper D, Ell PJ, Pilowsky LS (2003) Kinetic modelling of [123I]CNS 1261–a potential SPET tracer for the NMDA receptor. Nucl Med Biol 30:441–454PubMedCrossRefGoogle Scholar
  55. Erritzoe D, Rasmussen H, Kristiansen KT, Frokjaer VG, Haugbol S, Pinborg L, Baaré W, Svarer C, Madsen J, Lublin H, Knudsen GM, Glenthoj BY (2008) Cortical and subcortical 5-HT2A receptor binding in neuroleptic-naive first-episode schizophrenic patients. Neuropsychopharmacology 33:2435–2441PubMedCrossRefGoogle Scholar
  56. Farde L, Hall H, Ehrin E, Sedvall G (1986) Quantitative analysis of D2 dopamine receptor binding in the living human brain by PET. Science 231:258–261PubMedCrossRefGoogle Scholar
  57. Farde L, Wiesel FA, Stone-Elander S, Halldin C, Nordström AL, Hall H, Sedvall G (1990) D2 dopamine receptors in neuroleptic-naive schizophrenic patients. A positron emission tomography study with [11C] raclopride. Arch Gen Psychiatry 47:213–219PubMedCrossRefGoogle Scholar
  58. Farde L, Nordstrom AL, Wiesel FA, Pauli S, Halldin C, Sedvall G (1992) Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Arch Gen Psychiatry 49:538–544Google Scholar
  59. Fell MJ, McKinzie DL, Monn JA, Svensson KA (2012) Group II metabotropic glutamate receptor agonists and positive allosteric modulators as novel treatments for schizophrenia. Neuropharmacology 62:1473–1483PubMedCrossRefGoogle Scholar
  60. Finnema SJ, Bang-Andersen B, Wikström HV, Halldin C (2010a) Current state of agonist radioligands for imaging of brain dopamine D2/D3 receptors in vivo with positron emission tomography. Curr Top Med Chem 10:1477–1498PubMedCrossRefGoogle Scholar
  61. Finnema SJ, Varrone A, Hwang TJ, Gulyás B, Pierson ME, Halldin C, Farde L (2010b) Fenfluramine-induced serotonin release decreases [11C]AZ10419369 binding to 5-HT1B-receptors in the primate brain. Synapse 64:573–577PubMedCrossRefGoogle Scholar
  62. Frankle WG, Narendran R, Huang Y, Hwang DR, Lombardo I, Cangiano C, Gil R, Laruelle M, Abi-Dargham A (2005) Serotonin transporter availability in patients with schizophrenia: a positron emission tomography imaging study with [11C]DASB. Biol Psychiatry 57:1510–1516PubMedCrossRefGoogle Scholar
  63. Frankle WG, Lombardo I, Kegeles LS, Slifstein M, Martin JH, Huang Y, Hwang DR, Reich E, Cangiano C, Gil R, Laruelle M, Abi-Dargham A (2006) Serotonin 1A receptor availability in patients with schizophrenia and schizo-affective disorder: a positron emission tomography imaging study with [11C]WAY 100635. Psychopharmacology (Berl) 189:155–164CrossRefGoogle Scholar
  64. Fusar-Poli P, Howes OD, Allen P, Broome M, Valli I, Asselin MC, Grasby PM, McGuire PK (2010) Abnormal frontostriatal interactions in people with prodromal signs of psychosis: a multimodal imaging study. Arch Gen Psychiatry 67:683–691PubMedCrossRefGoogle Scholar
  65. Fusar-Poli P, Howes OD, Allen P, Broome M, Valli I, Asselin MC, Montgomery AJ, Grasby PM, McGuire P (2011a) Abnormal prefrontal activation directly related to pre-synaptic striatal dopamine dysfunction in people at clinical high risk for psychosis. Mol Psychiatry 16:67–75PubMedCrossRefGoogle Scholar
  66. Fusar-Poli P, Stone JM, Broome MR, Valli I, Mechelli A, McLean MA, Lythgoe DJ, O’Gorman RL, Barker GJ, McGuire PK (2011b) Thalamic glutamate levels as a predictor of cortical response during executive functioning in subjects at high risk for psychosis. Arch Gen Psychiatry 68:881–890PubMedCrossRefGoogle Scholar
  67. Ginovart N, Kapur S (2012) Role of dopamine D2 receptors for antipsychotic activity. In: Gross G, Geyer M (eds) Current antipsychotics, vol 212. Handbook of Experimental Pharamacology. Springer, HeidelbergGoogle Scholar
  68. Giuffrida A, Leweke FM, Gerth CW, Schreiber D, Koethe D, Faulhaber J, Klosterkötter J, Piomelli D (2004) Cerebrospinal anandamide levels are elevated in acute schizophrenia and are inversely correlated with psychotic symptoms. Neuropsychopharmacology 29:2108–2114PubMedCrossRefGoogle Scholar
  69. Glenthoj BY, Mackeprang T, Svarer C, Rasmussen H, Pinborg LH, Friberg L, Baaré W, Hemmingsen R, Videbaek C (2006) Frontal dopamine D2/3 receptor binding in drug naive first-episode schizophrenic patients correlates with positive psychotic symptoms and gender. Biol Psychiatry 60:621–629PubMedCrossRefGoogle Scholar
  70. Goff DC, Coyle JT (2001) The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatry 158:1367–1377PubMedCrossRefGoogle Scholar
  71. Goff DC, Hennen J, Lyoo IK, Tsai G, Wald LL, Evins AE, Yurgelun-Todd DA, Renshaw PF (2002) Modulation of brain and serum glutamatergic concentrations following a switch from conventional neuroleptics to olanzapine. Biol Psychiatry 51:493–497PubMedCrossRefGoogle Scholar
  72. Goto N, Yoshimura R, Moriya J, Kakeda S, Ueda N, Ikenouchi-Sugita A, Umene-Nakano W, Hayashi K, Oonari N, Korogi Y, Nakamura J (2009) Reduction of brain gamma-aminobutyric acid (GABA) concentrations in early-stage schizophrenia patients: 3T Proton MRS study. Schizophr Res 112:192–193PubMedCrossRefGoogle Scholar
  73. Graff-Guerrero A, Mizrahi R, Agid O, Marcon H, Barsoum P, Rusjan P, Wilson AA, Zipursky R, Kapur S (2009) The dopamine D2 receptors in high-affinity state and D3 receptors in schizophrenia: a clinical [11C]-(+)-PHNO PET study. Neuropsychopharmacology 34:1078–1086PubMedCrossRefGoogle Scholar
  74. Hashimoto K (2010) Glycine transport inhibitors for the treatment of schizophrenia. Open Med Chem J 4:10–19PubMedGoogle Scholar
  75. Heinz A, Schlagenhauf F (2010) Dopaminergic dysfunction in schizophrenia: salience attribution revisited. Schizophr Bull 36:472–485PubMedCrossRefGoogle Scholar
  76. Hietala J, Syvalahti E, Vuorio K, Räkköläinen V, Bergman J, Haaparanta M, Solin O, Kuoppamäki M, Kirvelä O, Ruotsalainen U, Salokangas RKR (1995) Presynaptic dopamine function in striatum of neuroleptic-naive schizophrenic patients. Lancet 346:1130–1131PubMedCrossRefGoogle Scholar
  77. Hietala J, Syvalahti E, Vilkman H, Vuorio K, Räkköläinen V, Bergman J, Haaparanta M, Solin O, Kuoppamäki M, Eronen E, Ruotsalainen U, Salokangas RK (1999) Depressive symptoms and presynaptic dopamine function in neuroleptic naive schizophrenia. Schizophr Res 35:41–50PubMedCrossRefGoogle Scholar
  78. Hirvonen J, van Erp TG, Huttunen J, Aalto S, Någren K, Huttunen M, Lönnqvist J, Kaprio J, Hietala J, Cannon TD (2005) Increased caudate dopamine D2 receptor availability as a genetic marker for schizophrenia. Arch Gen Psychiatry 62:371–378PubMedCrossRefGoogle Scholar
  79. Hirvonen J, van Erp TG, Huttunen J, Aalto S, Någren K, Huttunen M, Lönnqvist J, Kaprio J, Cannon TD, Hietala J (2006) Brain dopamine d1 receptors in twins discordant for schizophrenia. Am J Psychiatry 163:1747–1753PubMedCrossRefGoogle Scholar
  80. Howes OD, Montgomery AJ, Asselin MC, Murray RM, Grasby PM, McGuire PK (2007) Molecular imaging studies of the striatal dopaminergic system in psychosis and predictions for the prodromal phase of psychosis. Br J Psychiatry Suppl 51:s13–s18PubMedCrossRefGoogle Scholar
  81. Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: version III–the final common pathway. Schizophr Bull 35:549–562PubMedCrossRefGoogle Scholar
  82. Howes OD, Montgomery AJ, Asselin MC, Murray RM, Valli I, Tabraham P, Bramon-Bosch E, Valmaggia L, Johns L, Broome M, McGuire PK, Grasby PM (2009) Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Arch Gen Psychiatry 66:13–20PubMedCrossRefGoogle Scholar
  83. Howes OD, Bose SK, Turkheimer F, Valli I, Egerton A, Valmaggia LR, Murray RM, McGuire P (2011a) Dopamine synthesis capacity before onset of psychosis: a prospective [18F]-DOPA PET imaging study. Am J Psychiatry 168:1311–1317PubMedGoogle Scholar
  84. Howes O, Bose S, Turkheimer F, Valli I, Egerton A, Stahl D, Valmaggia L, Allen P, Murray R, McGuire P (2011b) Progressive increase in striatal dopamine synthesis capacity as patients develop psychosis: a PET study. Mol Psychiatry 16:885–886PubMedCrossRefGoogle Scholar
  85. Hsiao MC, Lin KJ, Liu CY, Tzen KY, Yen TC (2003) Dopamine transporter change in drug-naive schizophrenia: an imaging study with 99mTc-TRODAT-1. Schizophr Res 65:39–46PubMedCrossRefGoogle Scholar
  86. Huttunen J, Heinimaa M, Svirskis T, Nyman M, Kajander J, Forsback S, Solin O, Ilonen T, Korkeila J, Ristkari T, McGlashan T, Salokangas RK, Hietala J (2008) Striatal dopamine synthesis in first-degree relatives of patients with schizophrenia. Biol Psychiatry 63:114–117PubMedCrossRefGoogle Scholar
  87. Ito H, Takano H, Takahashi H, Arakawa R, Miyoshi M, Kodaka F, Okumura M, Otsuka T, Suhara T (2009) Effects of the antipsychotic risperidone on dopamine synthesis in human brain measured by positron emission tomography with L-[beta-11C]DOPA: a stabilizing effect for dopaminergic neurotransmission? J Neurosci 29:13730–13734PubMedCrossRefGoogle Scholar
  88. Joyce JN, Shane A, Lexow N, Winokur A, Casanova MF, Kleinman JE (1993) Serotonin uptake sites and serotonin receptors are altered in the limbic system of schizophrenics. Neuropsychopharmacology 8:315–336PubMedGoogle Scholar
  89. Kapur S, Remington G, Jones C, Wilson A, DaSilva J, Houle S, Zipursky R (1996) High levels of dopamine D2 receptor occupancy with low-dose haloperidol treatment: a PET study. Am J Psychiatry 153:948–950PubMedGoogle Scholar
  90. Kapur SJ, Zipursky R, Jones C, Remington G, Houle S (2000) Relationship between dopamine D2 occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am J Psychiatry 157:514–520PubMedCrossRefGoogle Scholar
  91. Karlsson P, Farde L, Halldin C, Sedvall G (2002) PET study of D1 dopamine receptor binding in neuroleptic-naive patients with schizophrenia. Am J Psychiatry 159:761–767PubMedCrossRefGoogle Scholar
  92. Kegeles LS, Slifstein M, Frankle WG, Xu X, Hackett E, Bae SA, Gonzales R, Kim JH, Alvarez B, Gil R, Laruelle M, Abi-Dargham A (2008) Dose-occupancy study of striatal and extrastriatal dopamine D2 receptors by aripiprazole in schizophrenia with PET and [18F]fallypride. Neuropsychopharmacology 33:3111–3125PubMedCrossRefGoogle Scholar
  93. Kegeles LS, Abi-Dargham A, Frankle WG, Gil R, Cooper TB, Slifstein M, Hwang DR, Huang Y, Haber SN, Laruelle M (2010a) Increased synaptic dopamine function in associative regions of the striatum in schizophrenia. Arch Gen Psychiatry 67:231–239PubMedCrossRefGoogle Scholar
  94. Kegeles LS, Slifstein M, Xu X, Urban N, Thompson JL, Moadel T, Harkavy-Friedman JM, Gil R, Laruelle M, Abi-Dargham A (2010b) Striatal and extrastriatal dopamine D2/D3 receptors in schizophrenia evaluated with [18F]fallypride positron emission tomography. Biol Psychiatry 68:634–641PubMedCrossRefGoogle Scholar
  95. Kegeles LS, Mao X, Stanford AD, Girgis R, Ojeil N, Xu X, Gil R, Slifstein M, Abi-Dargham A, Lisanby SH, Shungu DC (2012) Elevated prefrontal cortex γ-aminobutyric acid and glutamate-glutamine levels in schizophrenia measured in vivo with proton magnetic resonance spectroscopy. Arch Gen Psychiatry 69(5):449–459PubMedCrossRefGoogle Scholar
  96. Keshavan MS, Montrose DM, Pierri JN, Dick EL, Rosenberg D, Talagala L, Sweeney JA (1997) Magnetic resonance imaging and spectroscopy in offspring at risk for schizophrenia: preliminary studies. Prog Neuropsychopharmacol Biol Psychiatry 21:1285–1295PubMedCrossRefGoogle Scholar
  97. Kessler RM, Woodward ND, Riccardi P, Li R, Ansari MS, Anderson S, Dawant B, Zald D, Meltzer HY (2009) Dopamine D2 receptor levels in striatum, thalamus, substantia nigra, limbic regions, and cortex in schizophrenic subjects. Biol Psychiatry 65:1024–1031PubMedCrossRefGoogle Scholar
  98. Kestler LP, Walker E, Vega EM (2001) Dopamine receptors in the brains of schizophrenia patients: a meta-analysis of the findings. Behav Pharmacol 12:355–371PubMedCrossRefGoogle Scholar
  99. Kimura Y, Siméon FG, Hatazawa J, Mozley PD, Pike VW, Innis RB, Fujita M (2010) Biodistribution and radiation dosimetry of a positron emission tomographic ligand, 18F-SP203, to image metabotropic glutamate subtype 5 receptors in humans. Eur J Nucl Med Mol Imaging 37:1943–1949PubMedCrossRefGoogle Scholar
  100. Kinon BJ, Zhang L, Millen BA, Osuntokun OO, Williams JE, Kollack-Walker S, Jackson K, Kryzhanovskaya L, Jarkova N, HBBI Study Group (2011) A multicenter, inpatient, phase 2, double-blind, placebo-controlled dose-ranging study of LY2140023 monohydrate in patients with DSM-IV schizophrenia. J Clin Psychopharmacol 31:349–355PubMedCrossRefGoogle Scholar
  101. Klosterkötter J, Hellmich M, Steinmeyer EM, Schultze-Lutter F (2001) Diagnosing schizophrenia in the initial prodromal phase. Arch Gen Psychiatry 58:158–164PubMedCrossRefGoogle Scholar
  102. Knol RJ, de Bruin K, van Eck-Smit BL, Pimlott S, Wyper DJ, Booij J (2009) In vivo [123I]CNS-1261 binding to D-serine-activated and MK801-blocked NMDA receptors: a storage phosphor imaging study in rats. Synapse 63:557–564PubMedCrossRefGoogle Scholar
  103. Kosaka J, Takahashi H, Ito H, Takano A, Fujimura Y, Matsumoto R, Nozaki S, Yasuno F, Okubo Y, Kishimoto T, Suhara T (2010) Decreased binding of [11C]NNC112 and [11C]SCH23390 in patients with chronic schizophrenia. Life Sci 86:814–818PubMedCrossRefGoogle Scholar
  104. Kuepper R, Skinbjerg M, Abi-Dargham A (2012) The dopamine dysfunction in schizophrenia revisited: new insights into topography and course. In: Gross G, Geyer M (eds) Current antipsychotics, vol 212. Handbook of Experimental Pharmacology. Springer, HeidelbergGoogle Scholar
  105. Kumakura Y, Cumming P, Vernaleken I, Buchholz HG, Siessmeier T, Heinz A, Kienast T, Bartenstein P, Gründer G (2007) Elevated [18F]fluorodopamine turnover in brain of patients with schizophrenia: an [18F]fluorodopa/positron emission tomography study. J Neurosci 27:8080–8087PubMedCrossRefGoogle Scholar
  106. Kumakura Y, Cumming P (2009) PET studies of cerebral levodopa metabolism: a review of clinical findings and modeling approaches. Neuroscientist 15:635–650PubMedCrossRefGoogle Scholar
  107. Kumari V, Aasen I, Taylor P, Ffytche D, Williams SC, Sharma T (2006) Neural correlates of adjunctive rivastigmine treatment to antipsychotics in schizophrenia: a randomized, placebo-controlled, double-blind fMRI study. Neuroimage 29:545–556PubMedCrossRefGoogle Scholar
  108. Laakso A, Vilkman H, Alakare B, Haaparanta M, Bergman J, Solin O, Peurasaari J, Räkköläinen V, Syvälahti E, Hietala J (2000) Striatal dopamine transporter binding in neuroleptic-naive patients with schizophrenia studied with positron emission tomography. Am J Psychiatry 157:269–271PubMedCrossRefGoogle Scholar
  109. Laakso A, Bergman J, Haaparanta M, Vilkman H, Solin O, Syvälahti E, Hietala J (2001) Decreased striatal dopamine transporter binding in vivo in chronic schizophrenia. Schizophr Res 52:115–120PubMedCrossRefGoogle Scholar
  110. Lane HY, Liu YC, Huang CL, Chang YC, Liau CH, Perng CH, Tsai GE (2008) Sarcosine (N-methylglycine) treatment for acute schizophrenia: a randomized, double-blind study. Biol Psychiatry 63:9–12PubMedCrossRefGoogle Scholar
  111. Lane HY, Lin CH, Huang YJ, Liao CH, Chang YC, Tsai GE (2010) A randomized, double-blind, placebo-controlled comparison study of sarcosine (N-methylglycine) and D-serine add-on treatment for schizophrenia. Int J Neuropsychopharmacol 13:451–460PubMedCrossRefGoogle Scholar
  112. Lataster J, van Os J, de Haan L, Thewissen V, Bak M, Lataster T, Lardinois M, Delespaul PA, Myin-Germeys I (2011) Emotional experience and estimates of D2 receptor occupancy in psychotic patients treated with haloperidol, risperidone, or olanzapine: an experience sampling study. J Clin Psychiatry 72:1397–1404PubMedCrossRefGoogle Scholar
  113. Laruelle M, Baldwin RM, Malison RT, Zea-Ponce Y, Zoghbi SS, al-Tikriti MS, Sybirska EH, Zimmermann RC, Wisniewski G, Neumeyer JL, Milius RA, Wang S, Smith EO, Roth RH, Charney DS, Hoffer PB, Innis RB (1993) SPECT imaging of dopamine and serotonin. transporters with [123I]beta-CIT: pharmacological characterization of brain uptake in nonhuman primates. Synapse 13:295–309PubMedCrossRefGoogle Scholar
  114. Laruelle M, Abi-Dargham A, van Dyck GR, D’Souza CD, Erdos J, McCance E, Rosenblatt W, Fingado C, Zoghbi SS, Baldwin RM, Seibyl JP, Krystal JH, Charney DS, Innis RB (1996) Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug free schizophrenic subjects. Proc Natl Acad Sci USA 93:9235–9240PubMedCrossRefGoogle Scholar
  115. Laruelle M (1998) Imaging dopamine transmission in schizophrenia. A review and meta-analysis. Q J Nucl Med 42:211–221PubMedGoogle Scholar
  116. Laruelle M, Abi-Dargham A, Gil R, Kegeles L, Innis R (1999) Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol Psychiatry 46:56–72PubMedCrossRefGoogle Scholar
  117. Laruelle M, Abi-Dargham A, van Dyck C, Gil R, D’Souza DC, Krystal J, Seibyl J, Baldwin R, Innis R (2000) Dopamine and serotonin transporters in patients with schizophrenia: an imaging study with [123I]beta-CIT. Biol Psychiatry 47:371–379PubMedCrossRefGoogle Scholar
  118. Lavalaye J, Linszen DH, Booij J, Dingemans PM, Reneman L, Habraken JB, Gersons BP, van Royen EA (2001a) Dopamine transporter density in young patients with schizophrenia assessed with [123I]FP-CIT SPECT. Schizophr Res 47:59–67PubMedCrossRefGoogle Scholar
  119. Lavalaye J, Booij J, Linszen DH, Reneman L, van Royen EA (2001b) Higher occupancy of muscarinic receptors by olanzapine than risperidone in patients with schizophrenia. A[123I]-IDEX SPECT study. Psychopharmacology (Berl) 156:53–57CrossRefGoogle Scholar
  120. Lee KJ, Lee JS, Kim SJ, Correll CU, Wee H, Yoo SY, Jeong JM, Lee DS, Lee SI, Kwon JS (2008) Loss of asymmetry in D2 receptors of putamen in unaffected family members at increased genetic risk for schizophrenia. Acta Psychiatr Scand 118:200–208PubMedCrossRefGoogle Scholar
  121. Lewis R, Kapur S, Jones C, DaSilva J, Brown GM, Wilson AA, Houle S, Zipursky RB (1999) Serotonin 5-HT2 receptors in schizophrenia: a PET study using [18F]setoperone in neuroleptic-naive patients and normal subjects. Am J Psychiatry 156:72–78PubMedGoogle Scholar
  122. Lieberman JA, Sheitman BB, Kinon BJ (1997) Neurochemical sensitization in the pathophysiology of schizophrenia: deficits and dysfunction in neuronal regulation and plasticity. Neuropsychopharmacology 17:205–229PubMedCrossRefGoogle Scholar
  123. Lindström LH, Gefvert O, Hagberg G, Lundberg T, Bergström M, Hartvig P, Långström B (1999) Increased dopamine synthesis rate in medial prefrontal cortex and striatum in schizophrenia indicated by L-(beta-11C) DOPA and PET. Biol Psychiatry 46:681–688PubMedCrossRefGoogle Scholar
  124. Lutkenhoff ES, van Erp TG, Thomas MA, Therman S, Manninen M, Huttunen MO, Kaprio J, Lönnqvist J, O’Neill J, Cannon TD (2010) Proton MRS in twin pairs discordant for schizophrenia. Mol Psychiatry 15:308–318PubMedCrossRefGoogle Scholar
  125. Maddock RJ, Buonocore MH (2012) MR spectroscopic studies of the brain in psychiatric disorders. Curr Top Behav Neurosci (in press)Google Scholar
  126. Mateos JJ, Lomeña F, Parellada E, Font M, Fernandez E, Pavia J, Prats A, Pons F, Bernardo M (2005) Decreased striatal dopamine transporter binding assessed with [123I] FP-CIT in first-episode schizophrenic patients with and without short-term antipsychotic-induced parkinsonism. Psychopharmacology (Berl) 181:401–406CrossRefGoogle Scholar
  127. Mateos JJ, Lomeña F, Parellada E, Mireia F, Fernandez-Egea E, Pavia J, Prats A, Pons F, Bernardo M (2007) Lower striatal dopamine transporter binding in neuroleptic-naive schizophrenic patients is not related to antipsychotic treatment but it suggests an illness trait. Psychopharmacology (Berl) 191:805–811CrossRefGoogle Scholar
  128. McEvoy JP, Hogarty GE, Steingard S (1991) Optimal dose of the neuroleptic in acute schizophrenia. Arch Gen Psychiatry 48:739–745PubMedCrossRefGoogle Scholar
  129. McGowan S, Lawrence AD, Sales T, Quested D, Grasby P (2004) Presynaptic dopaminergic dysfunction in schizophrenia: a positron emission tomographic [18F]fluorodopa study. Arch Gen Psychiatry 61:134–142PubMedCrossRefGoogle Scholar
  130. Mercuri NB, Saiardi A, Bonci A, Picetti R, Calabresi P, Bernardi G, Borrelli E (1997) Loss of autoreceptor function in dopaminergic neurons from dopamine D2 receptor deficient mice. Neuroscience 79:323–327PubMedCrossRefGoogle Scholar
  131. Meyer-Lindenberg A, Miletich RS, Kohn PD, Esposito G, Carson RE, Quarantelli M, Weinberger DR, Berman KF (2002) Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat Neurosci 5:267–271PubMedCrossRefGoogle Scholar
  132. Miller TJ, McGlashan TH, Rosen JL, Cadenhead K, Cannon T, Ventura J, McFarlane W, Perkins DO, Pearlson GD, Woods SW (2003) Prodromal assessment with the structured interview for prodromal syndromes and the scale of prodromal symptoms: predictive validity, interrater reliability, and training to reliability. Schizophr Bull 29:703–715PubMedCrossRefGoogle Scholar
  133. Mizrahi R, Rusjan P, Agid O, Graff A, Mamo DC, Zipursky RB, Kapur S (2007) Adverse subjective experience with antipsychotics and its relationship to striatal and extrastriatal D2 receptors: a PET study in schizophrenia. Am J Psychiatry 164:630–637PubMedCrossRefGoogle Scholar
  134. Mizrahi R, Mamo D, Rusjan P, Graff A, Houle S, Kapur S (2009) The relationship between subjective well-being and dopamine D2 receptors in patients treated with a dopamine partial agonist and full antagonist antipsychotics. Int J Neuropsychopharmacol 12:715–721PubMedCrossRefGoogle Scholar
  135. Mizrahi R, Addington J, Rusjan PM, Suridjan I, Ng A, Boileau I, Pruessner JC, Remington G, Houle S, Wilson AA (2012) Increased stress-induced dopamine release in psychosis. Biol Psychiatry 71(6):561–567PubMedCrossRefGoogle Scholar
  136. Moore RY, Whone AL, McGowan S, Brooks DJ (2003) Monoamine neuron innervation of the normal human brain: an 18F-DOPA PET study. Brain Res 982:137–145PubMedCrossRefGoogle Scholar
  137. Narendran R, Frankle WG, Keefe R, Gil R, Martinez D, Slifstein M, Kegeles LS, Talbot PS, Huang Y, Hwang DR, Khenissi L, Cooper TB, Laruelle M, Abi-Dargham A (2005) Altered prefrontal dopaminergic function in chronic recreational ketamine users. Am J Psychiatry 162:2352–2359PubMedCrossRefGoogle Scholar
  138. Narendran R, Mason NS, Laymon CM, Lopresti BJ, Velasquez ND, May MA, Kendro S, Martinez D, Mathis CA, Frankle WG (2010) A comparative evaluation of the dopamine D2/3 agonist radiotracer [11C](−)-N-propyl-norapomorphine and antagonist [11C]raclopride to measure amphetamine-induced dopamine release in the human striatum. J Pharmacol Exp Ther 333:533–539PubMedCrossRefGoogle Scholar
  139. Nasrallah HA (2008) Atypical antipsychotic-induced metabolic side effects: insights from receptor-binding profiles. Mol Psychiatry 13:27–35PubMedCrossRefGoogle Scholar
  140. Neumeyer JL, Wang SY, Milius RA, Baldwin RM, Zea-Ponce Y, Hoffer PB, Sybirska E, al-Tikriti M, Charney DS, Malison RT, Laruelle M, Innis RB (1991) [123I]-2 beta-carbomethoxy-3 beta-(4-iodophenyl)tropane: high-affinity SPECT radiotracer of monoamine reuptake sites in brain. J Med Chem 34:3144–3146PubMedCrossRefGoogle Scholar
  141. Ngan ET, Yatham LN, Ruth TJ, Liddle PF (2000) Decreased serotonin 2A receptor densities in neuroleptic-naive patients with schizophrenia: a PET study using [18F]setoperone. Am J Psychiatry 157:1016–1018PubMedCrossRefGoogle Scholar
  142. Nikolaus S, Antke C, Kley K, Beu M, Wirrwar A, Müller HW (2009) Pretreatment with haloperidol reduces 123I-FP-CIT binding to the dopamine transporter in the rat striatum: an in vivo imaging study with a dedicated small-animal SPECT camera. J Nucl Med 50:1147–1152PubMedCrossRefGoogle Scholar
  143. Nordström AL, Farde L, Nyberg S, Karlsson P, Halldin C, Sedvall G (1995) D1, D2, and 5-HT2 receptor occupancy in relation to clozapine serum concentration: a PET study of schizophrenic patients. Am J Psychiatry 152:1444–1449PubMedGoogle Scholar
  144. Nordström AL, Farde L, Wiesel FA, Forslund K, Pauli S, Halldin C, Uppfeldt G (1993) Central D2 dopamine receptor occupancy in relation to antipsychotic drug effects—a double-blind PET study of schizophrenic patients. Biol Psychiatry 33:227–235PubMedCrossRefGoogle Scholar
  145. Nozaki S, Kato M, Takano H, Ito H, Takahashi H, Arakawa R, Okumura M, Fujimura Y, Matsumoto R, Ota M, Takano A, Otsuka A, Yasuno F, Okubo Y, Kashima H, Suhara T (2009) Regional dopamine synthesis in patients with schizophrenia using L-[beta-11C]DOPA PET. Schizophr Res 108:78–84PubMedCrossRefGoogle Scholar
  146. Nyberg S, Farde L, Halldin C, Dahl M-L, Bertilsson L (1995) D2 dopamine receptor occupancy during low-dose treatment with haloperidol decanoate. Am J Psychiatry 152:173–178PubMedGoogle Scholar
  147. Ohrmann P, Siegmund A, Suslow T, Spitzberg K, Kersting A, Arolt V, Heindel W, Pfleiderer B (2005) Evidence for glutamatergic neuronal dysfunction in the prefrontal cortex in chronic but not in first-episode patients with schizophrenia: a proton magnetic resonance spectroscopy study. Schizophr Res 73:153–157PubMedCrossRefGoogle Scholar
  148. Okubo Y, Suhara T, Suzuki K, Kobayashi K, Inoue O, Terasaki O, Someya Y, Sassa T, Sudo Y, Matsushima E, Iyo M, Tateno Y, Toru M (1997) Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 385:634–636PubMedCrossRefGoogle Scholar
  149. Okubo Y, Suhara T, Suzuki K, Kobayashi K, Inoue O, Terasaki O, Someya Y, Sassa T, Sudo Y, Matsushima E, Iyo M, Tateno Y, Toru M (2000) Serotonin 5-HT2 receptors in schizophrenic patients studied by positron emission tomography. Life Sci 66:2455–2464PubMedGoogle Scholar
  150. Passchier J, Gentile G, Porter R, Herdon H, Salinas C, Jakobsen S, Audrain H, Laruelle M, Gunn RN (2010) Identification and evaluation of [11C]GSK931145 as a novel ligand for imaging the type 1 glycine transporter with positron emission tomography. Synapse 64:542–549PubMedCrossRefGoogle Scholar
  151. Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreev BV, Avedisova AS, Bardenstein LM, Gurovich IY, Morozova MA, Mosolov SN, Neznanov NG, Reznik AM, Smulevich AB, Tochilov VA, Johnson BG, Monn JA, Schoepp DD (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nat Med 13:1102–1107PubMedCrossRefGoogle Scholar
  152. Pavese N, Simpson BS, Metta V, Ramlackhansingh A, Chaudhuri KR, Brooks DJ (2012) [18F]FDOPA uptake in the raphe nuclei complex reflects serotonin transporter availability. A combined [18F]FDOPA and [11C]DASB PET study in Parkinson’s disease. Neuroimage 59:1080–1084PubMedCrossRefGoogle Scholar
  153. Pilowsky LS, Bressan RA, Stone JM, Erlandsson K, Mulligan RS, Krystal JH, Ell PJ (2006) First in vivo evidence of an NMDA receptor deficit in medication-free schizophrenic patients. Mol Psychiatry 11:118–119PubMedCrossRefGoogle Scholar
  154. Pilowsky LS, Costa DC, Ell PJ, Verhoeff NP, Murray RM, Kerwin RW (1994) D2 dopamine receptor binding in (the basal ganglia of antipsychotic-free schizophrenic patients. An 123IIBZM single photon emission computerised tomography study. Br J Psychiatry 164:16–26.PubMedCrossRefGoogle Scholar
  155. Rabiner EA, Laruelle M (2010) Imaging the D3 receptor in humans in vivo using [11C](+)-PHNO positron emission tomography (PET). Int J Neuropsychopharmacol 13:289–290PubMedCrossRefGoogle Scholar
  156. Raedler TJ, Knable MB, Jones DW, Urbina RA, Egan MF, Weinberger DR (2003) Central muscarinic acetylcholine receptor availability in patients treated with clozapine. Neuropsychopharmacology 28:1531–1537PubMedCrossRefGoogle Scholar
  157. Raedler TJ, Bymaster FP, Tandon R, Copolov D, Dean B (2007) Towards a muscarinic hypothesis of schizophrenia. Mol Psychiatry 12:232–246PubMedGoogle Scholar
  158. Raedler TJ (2007) Comparison of the in vivo muscarinic cholinergic receptor availability in patients treated with clozapine and olanzapine. Int J Neuropsychopharmacol 10:275–280PubMedCrossRefGoogle Scholar
  159. Reith J, Benkelfat C, Sherwin A, Yasuhara Y, Kuwabara H, Andermann F, Bachneff S, Cumming P, Diksic M, Dyve SE, Etienne P, Evans AC, Lal S, Shevell M, Savard G, Wong DF, Chouinard G, Gjedde A (1994) Elevated dopa decarboxylase activity in living brain of patients with psychosis. Proc Natl Acad Sci USA 91:11651–11654PubMedCrossRefGoogle Scholar
  160. Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 18:247–291PubMedCrossRefGoogle Scholar
  161. Ruhrmann S, Schultze-Lutter F, Salokangas RK, Heinimaa M, Linszen D, Dingemans P, Birchwood M, Patterson P, Juckel G, Heinz A, Morrison A, Lewis S, von Reventlow HG, Klosterkötter J (2010) Prediction of psychosis in adolescents and young adults at high risk: results from the prospective European prediction of psychosis study. Arch Gen Psychiatry 67:241–251PubMedCrossRefGoogle Scholar
  162. Sanabria-Bohórquez SM, Joshi AD, Holahan M, Daneker L, Riffel K, Williams M, Li W, Cook JJ, Hamill TG (2012) Quantification of the glycine transporter 1 in rhesus monkey brain using [18F]MK-6577 and a model-based input function. Neuroimage 59:2589–2599PubMedCrossRefGoogle Scholar
  163. Scheffel U, Lever JR, Abraham P, Parham KR, Mathews WB, Kopajtic T, Carroll FI, Kuhar MJ (1997) N-substituted phenyltropanes as in vivo binding ligands for rapid imaging studies of the dopamine transporter. Synapse 25:345–349PubMedCrossRefGoogle Scholar
  164. Schlagenhauf F, Dinges M, Beck A, Wüstenberg T, Friedel E, Dembler T, Sarkar R, Wrase J, Gallinat J, Juckel G, Heinz A (2010) Switching schizophrenia patients from typical neuroleptics to aripiprazole: effects on working memory dependent functional activation. Schizophr Res 118:189–200PubMedCrossRefGoogle Scholar
  165. Schmitt GJ, Meisenzahl EM, Frodl T, La Fougère C, Hahn K, Möller HJ, Dresel S (2005) The striatal dopamine transporter in first-episode, drug-naive schizophrenic patients: evaluation by the new SPECT-ligand [99mTc]TRODAT-1. J Psychopharmacol 19:488–493PubMedCrossRefGoogle Scholar
  166. Schmitt GJ, Frodl T, Dresel S, la Fougère C, Bottlender R, Koutsouleris N, Hahn K, Möller HJ, Meisenzahl EM (2006) Striatal dopamine transporter availability is associated with the productive psychotic state in first episode, drug-naive schizophrenic patients. Eur Arch Psychiatry Clin Neurosci 256:115–121PubMedCrossRefGoogle Scholar
  167. Schmitt GJ, la Fougère C, Dresel S, Frodl T, Hahn K, Möller HJ, Meisenzahl EM (2008) Dual-isotope SPECT imaging of striatal dopamine: first episode, drug naïve schizophrenic patients. Schizophr Res 101:133–141PubMedCrossRefGoogle Scholar
  168. Schröder J, Bubeck B, Demisch S, Sauer H (1997) Benzodiazepine receptor distribution and diazepam binding in schizophrenia: an exploratory study. Psychiatry Res Neuroimaging 68:125–131CrossRefGoogle Scholar
  169. Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593–1599PubMedCrossRefGoogle Scholar
  170. Seeman P, Weinshenker D, Quirion R, Srivastava LK, Bhardwaj SK, Grandy DK, Premont RT, Sotnikova TD, Boksa P, El-Ghundi M, O’dowd BF, George SR, Perreault ML, Männistö PT, Robinson S, Palmiter RD, Tallerico T (2005) Dopamine supersensitivity correlates with D2High states, implying many paths to psychosis. Proc Natl Acad Sci USA 102:3513–3518PubMedCrossRefGoogle Scholar
  171. Shotbolt P, Stokes PR, Owens SF, Toulopoulou T, Picchioni MM, Bose SK, Murray RM, Howes OD (2011) Striatal dopamine synthesis capacity in twins discordant for schizophrenia. Psychol Med 41:2331–2338PubMedCrossRefGoogle Scholar
  172. Sibon I, Benkelfat C, Gravel P, Aznavour N, Costes N, Mzengeza S, Booij L, Baker G, Soucy JP, Zimmer L, Descarries L (2008) Decreased [18F]MPPF binding potential in the dorsal raphe nucleus after a single oral dose of fluoxetine: a positron-emission tomography study in healthy volunteers. Biol Psychiatry 63:1135–1140PubMedCrossRefGoogle Scholar
  173. Sjøholm H, Bratlid T, Sundsfjord J (2004) 123I-beta-CIT SPECT demonstrates increased presynaptic dopamine transporter binding sites in basal ganglia in vivo in schizophrenia. Psychopharmacology (Berl) 173:27–31CrossRefGoogle Scholar
  174. Stanley JA, Williamson PC, Drost DJ, Rylett RJ, Carr TJ, Malla A, Thompson RT (1996) An in vivo proton magnetic resonance spectroscopy study of schizophrenia patients. Schizophr Bull 22:597–609PubMedCrossRefGoogle Scholar
  175. Stone JM (2009) Imaging the glutamate system in humans: relevance to drug discovery for schizophrenia. Curr Pharm Des 15:2594–2602PubMedCrossRefGoogle Scholar
  176. Suhara T, Okubo Y, Yasuno F, Sudo Y, Inoue M, Ichimiya T, Nakashima Y, Nakayama K, Tanada S, Suzuki K, Halldin C, Farde L (2002) Decreased dopamine D2 receptor binding in the anterior cingulate cortex in schizophrenia. Arch Gen Psychiatry 59:25–30PubMedCrossRefGoogle Scholar
  177. Sunahara RK, Guan HC, O’Dowd BF, Seeman P, Laurier LG, Ng G, George SR, Torchia J, Van Tol HH, Niznik HB (1991) Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1. Nature 350:614–619PubMedCrossRefGoogle Scholar
  178. Szulc A, Galinska B, Tarasow E, Dzienis W, Kubas B, Konarzewska B, Walecki J, Alathiaki AS, Czernikiewicz A (2005) The effect of risperidone on metabolite measures in the frontal lobe, temporal lobe, and thalamus in schizophrenic patients. A proton magnetic resonance spectroscopy (1H MRS). Pharmacopsychiatry 38:214–219PubMedCrossRefGoogle Scholar
  179. Talvik M, Nordstrom AL, Olsson H, Halldin C, Farde L (2003) Decreased thalamic D2/D3 receptor binding in drug-naive patients with schizophrenia: a PET study with [11C]FLB 457. Int J Neuropsychopharmacol 6:361–370PubMedCrossRefGoogle Scholar
  180. Takano A, Arakawa R, Ito H, Tateno A, Takahashi H, Matsumoto R, Okubo Y, Suhara T (2010) Peripheral benzodiazepine receptors in patients with chronic schizophrenia: a PET study with [11C]DAA1106. Int J Neuropsychopharmacol 13:943–950PubMedCrossRefGoogle Scholar
  181. Tauscher J, Kapur S, Verhoeff NP, Hussey DF, Daskalakis ZJ, Tauscher-Wisniewski S, Wilson AA, Houle S, Kasper S, Zipursky RB (2002a) Brain serotonin 5-HT1A receptor binding in schizophrenia measured by positron emission tomography and [11C]WAY-100635. Arch Gen Psychiatry 59:514–520PubMedCrossRefGoogle Scholar
  182. Tauscher J, Jones C, Remington G, Zipursky RB, Kapur S (2002b) Significant dissociation of brain and plasma kinetics with antipsychotics. Mol Psychiatry 7:317–321PubMedCrossRefGoogle Scholar
  183. Taylor SF, Koeppe RA, Tandon R, Zubieta JK, Frey KA (2000) In vivo measurement of the vesicular monoamine transporter in schizophrenia. Neuropsychopharmacology 23:667–675PubMedCrossRefGoogle Scholar
  184. Tayoshi S, Nakataki M, Sumitani S, Taniguchi K, Shibuya-Tayoshi S, Numata S, Iga J, Ueno S, Harada M, Ohmori T (2010) GABA concentration in schizophrenia patients and the effects of antipsychotic medication: a proton magnetic resonance spectroscopy study. Schizophr Res 117:83–91PubMedCrossRefGoogle Scholar
  185. Théberge J, Bartha R, Drost DJ, Menon RS, Malla A, Takhar J, Neufeld RW, Rogers J, Pavlosky W, Schaefer B, Densmore M, Al-Semaan Y, Williamson PC (2002) Glutamate and glutamine measured with 4.0 T proton MRS in never-treated patients with schizophrenia and healthy volunteers. Am J Psychiatry 159:1944–1946PubMedCrossRefGoogle Scholar
  186. Théberge J, Al-Semaan Y, Williamson PC, Menon RS, Neufeld RW, Rajakumar N, Schaefer B, Densmore M, Drost DJ (2003) Glutamate and glutamine in the anterior cingulate and thalamus of medicated patients with chronic schizophrenia and healthy comparison subjects measured with 4.0-T proton MRS. Am J Psychiatry 160:2231–2233PubMedCrossRefGoogle Scholar
  187. Théberge J, Williamson KE, Aoyama N, Drost DJ, Manchanda R, Malla AK, Northcott S, Menon RS, Neufeld RW, Rajakumar N, Pavlosky W, Densmore M, Schaefer B, Williamson PC (2007) Longitudinal grey-matter and glutamatergic losses in first-episode schizophrenia. Br J Psychiatry 191:325–334PubMedCrossRefGoogle Scholar
  188. Thompson JL, Urban N, Abi-Dargham A (2009) How have developments in molecular imaging techniques furthered schizophrenia research? Imaging Med 1:135–153PubMedCrossRefGoogle Scholar
  189. Tibbo P, Hanstock C, Valiakalayil A, Allen P (2004) 3-T proton MRS investigation of glutamate and glutamine in adolescents at high genetic risk for schizophrenia. Am J Psychiatry 161:1116–1118PubMedCrossRefGoogle Scholar
  190. Tregellas JR, Tanabe J, Rojas DC, Shatti S, Olincy A, Johnson L, Martin LF, Soti F, Kem WR, Leonard S, Freedman R (2011) Effects of an alpha 7-nicotinic agonist on default network activity in schizophrenia. Biol Psychiatry 69:7–11PubMedCrossRefGoogle Scholar
  191. Trichard C, Paillere-Martinot ML, Attar-Levy D, Blin J, Feline A, Martinot JL (1998) No serotonin 5- HT2A receptor density abnormality in the cortex of schizophrenic patients studied with PET. Schizophr Res 31:13–17PubMedCrossRefGoogle Scholar
  192. Tuppurainen H, Kuikka J, Viinamaki H, Husso-Saastamoinen M, Bergstrom K, Tiihonen J (2003) Extrastriatal dopamine D2/3 receptor density and distribution in drug-naive schizophrenic patients. Mol Psychiatry 8:453–455PubMedCrossRefGoogle Scholar
  193. Tuppurainen H, Kuikka JT, Laakso MP, Viinamaki H, Husso M, Tiihonen J (2006) Midbrain dopamine D2/3 receptor binding in schizophrenia. Eur Arch Psychiatry Clin Neurosci 256:382–387PubMedCrossRefGoogle Scholar
  194. van Berckel BN, Kegeles LS, Waterhouse R, Guo N, Hwang DR, Huang Y, Narendran R, Van Heertum R, Laruelle M (2006) Modulation of amphetamine-induced dopamine release by group II metabotropic glutamate receptor agonist LY354740 in non-human primates studied with positron emission tomography. Neuropsychopharmacology 31:967–977PubMedCrossRefGoogle Scholar
  195. van Berckel BN, Bossong MG, Boellaard R, Kloet R, Schuitemaker A, Caspers E, Luurtsema G, Windhorst AD, Cahn W, Lammertsma AA, Kahn RS (2008) Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol Psychiatry 64:820–822PubMedCrossRefGoogle Scholar
  196. van Beveren NJ, Krab LC, Swagemakers S, Buitendijk G, Boot E, van der Spek P, Elgersma Y, van Ameslvoort TA (2012) Functional gene-expression analysis shows involvement of schizophrenia-relevant pathways in patients with 22q11 deletion syndrome. PLoS One 7(3):e33473PubMedCrossRefGoogle Scholar
  197. Veltman DJ, Ruhé HG, Booij J (2010) Investigating serotonergic function using positron emission tomography: overview and recent findings. Curr Pharm Des 16:1979–1989PubMedCrossRefGoogle Scholar
  198. Verhoeff NP, Soares JC, D’Souza CD, Gil R, Degen K, Abi-Dargham A, Zoghbi SS, Fujita M, Rajeevan N, Seibyl JP, Krystal JH, van Dyck CH, Charney DS, Innis RB (1999) [123I]Iomazenil SPECT benzodiazepine receptor imaging in schizophrenia. Psychiatry Res 91:163–173PubMedCrossRefGoogle Scholar
  199. Videbaek C, Toska K, Scheideler MA, Paulson OB, Moos Knudsen G (2000) SPECT tracer [123I]IBZM has similar affinity to dopamine D2 and D3 receptors. Synapse 38:338–342PubMedCrossRefGoogle Scholar
  200. Williams HJ, Owen MJ, O’Donovan MC (2007) Is COMT a susceptibility gene for schizophrenia? Schizophr Bull 33:635–641PubMedCrossRefGoogle Scholar
  201. Wolkin A, Brodie JD, Barouche F, Rotrosen J, Wolf AP, Smith M, Fowler J, Cooper TB (1989a) Dopamine receptor occupancy and plasma haloperidol levels. Arch Gen Psychiatry 46:482–484PubMedCrossRefGoogle Scholar
  202. Wolkin A, Barouche F, Wolf AP, Rotrosen J, Fowler JS, Shiue CY, Cooper TB, Brodie JD (1989b) Dopamine blockade and clinical response: evidence for two biological subgroups of schizophrenia. Am J Psychiatry 146:905–908PubMedGoogle Scholar
  203. Wong DF, Kuwabara H, Horti AG, Raymont V, Brasic J, Guevara M, Ye W, Dannals RF, Ravert HT, Nandi A, Rahmim A, Ming JE, Grachev I, Roy C, Cascella N (2010) Quantification of cerebral cannabinoid receptors subtype 1 (CB1) in healthy subjects and schizophrenia by the novel PET radioligand [11C]OMAR. Neuroimage 52:1505–1513PubMedCrossRefGoogle Scholar
  204. Yamasaki T, Fujinaga M, Maeda J, Kawamura K, Yui J, Hatori A, Yoshida Y, Nagai Y, Tokunaga M, Higuchi M, Suhara T, Fukumura T, Zhang MR (2012) Imaging for metabotropic glutamate receptor subtype 1 in rat and monkey brains using PET with [18F]FITM. Eur J Nucl Med Mol Imaging 39(4):632–641PubMedCrossRefGoogle Scholar
  205. Yang YK, Yu L, Yeh TL, Chiu NT, Chen PS, Lee IH (2004) Associated alterations of striatal dopamine D2/D3 receptor and transporter binding in drug-naive patients with schizophrenia: a dual-isotope SPECT study. Am J Psychiatry 161:1496–1498PubMedCrossRefGoogle Scholar
  206. Yasuno F, Suhara T, Ichimiya T, Takano A, Ando T, Okubo Y (2004b) Decreased 5-HT1A receptor binding in amygdala of schizophrenia. Biol Psychiatry 55:439–444PubMedCrossRefGoogle Scholar
  207. Yasuno F, Suhara T, Okubo Y, Sudo Y, Inoue M, Ichimiya T, Takano A, Nakayama K, Halldin C, Farde L (2004a) Low dopamine D2 receptor binding in subregions of the thalamus in schizophrenia. Am J Psychiatry 161:1016–1022PubMedCrossRefGoogle Scholar
  208. Yokoi F, Gründer G, Biziere K, Stephane M, Dogan AS, Dannals RF, Ravert H, Suri A, Bramer S, Wong DF (2002) Dopamine D2 and D3 receptor occupancy in normal humans treated with the antipsychotic drug aripiprazole (OPC 14597): a study using positron emission tomography and [11C]raclopride. Neuropsychopharmacology 27:248–259PubMedCrossRefGoogle Scholar
  209. Yoo SY, Yeon S, Choi CH, Kang DH, Lee JM, Shin NY, Jung WH, Choi JS, Jang DP, Kwon JS (2009) Proton magnetic resonance spectroscopy in subjects with high genetic risk of schizophrenia: investigation of anterior cingulate, dorsolateral prefrontal cortex and thalamus. Schizophr Res 111:86–93PubMedCrossRefGoogle Scholar
  210. Yoon JH, Maddock RJ, Rokem A, Silver MA, Minzenberg MJ, Ragland JD, Carter CS (2010) GABA concentration is reduced in visual cortex in schizophrenia and correlates with orientation-specific surround suppression. J Neurosci 30:3777–3781PubMedCrossRefGoogle Scholar
  211. Yung AR, Phillips LJ, Yuen HP, Francey SM, McFarlane CA, Hallgren M, McGorry PD (2003) Psychosis prediction: 12-month follow up of a high-risk (“prodromal”) group. Schizophr Res 60:21–32PubMedCrossRefGoogle Scholar
  212. Yung AR, Nelson B, Stanford C, Simmons MB, Cosgrave EM, Killackey E, Phillips LJ, Bechdolf A, Buckby J, McGorry PD (2008) Validation of “prodromal” criteria to detect individuals at ultra high risk of psychosis: 2 year follow-up. Schizophr Res 105:10–17PubMedCrossRefGoogle Scholar
  213. Zhang W, Bymaster FP (1999) The in vivo effects of olanzapine and other antipsychotic agents on receptor occupancy and antagonism of dopamine D1, D2, D3, 5HT2A and muscarinic receptors. Psychopharmacology (Berl) 141:267–278CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Nuclear MedicineAcademic Medical Centre, University of AmsterdamAmsterdamThe Netherlands
  2. 2.Department of Psychiatry and PsychologyUniversity of MaastrichtMaastrichtThe Netherlands

Personalised recommendations