Cardiovascular Effects of Norepinephrine in Septic Shock

  • X. Monnet
  • J.-L. Teboul
Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM, volume 2012)

Abstract

Septic shock is characterized by numerous cardiovascular abnormalities including absolute and relative hypovolemia, vascular tone depression, myocardial dysfunction, derangements in regional blood flow distribution and microcirculation disorders. The degree of severity of each of these abnormalities is variable from patient to patient. Although volume resuscitation is the most urgent therapy, current international guidelines recommend administering a vasopressor early to sustain life and maintain perfusion in the face of life-threatening hypotension, even when hypovolemia has not yet been resolved [1]. Indeed, if the mean arterial pressure (MAP) is markedly reduced, the perfusion pressure of critical organs (e.g., kidney, brain, myocardium, liver) may be lower than the lower threshold of autoregulation so that the ability of autoregulation to maintain vital organ blood flow may be lost. This can result in organ ischemia and eventually in organ failure, even if the systemic blood flow is high. The decrease in organ blood flow may be particularly marked in those patients with pre-existing renal, carotid, coronary or mesenteric atherosclerotic lesions as well as in those with pre-existing hypertension. In these conditions, increasing MAP above a certain critical level can restore organ perfusion even in the absence of an increase in cardiac output. Clinical evidence of such a pressure effect has been provided in the context of septic shock in studies where correction of severe hypotension with a vasoconstrictor was associated with improved renal function in the absence of any change in cardiac output [2–4].

Keywords

Cardiac Output Septic Shock Septic Patient Venous Return Septic Shock Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dellinger RP, Levy MM, Carlet JM, et al (2008) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 36: 296–327PubMedCrossRefGoogle Scholar
  2. 2.
    Albanese J, Leone M, Garnier F, et al (2004) Renal effects of norepinephrine in septic and nonseptic patients. Chest 126: 534–539PubMedCrossRefGoogle Scholar
  3. 3.
    Desjars P, Pinaud M, Bugnon D, Tassaud F (1989) Norepinephrine therapy has no deleterious renal effects in human septic shock. Crit Care Med 17: 426–429PubMedCrossRefGoogle Scholar
  4. 4.
    Redl-Wenzl EM, Armbruster C, Edelmann G, et al (1993) The effects of norepinephrine on hemodynamics and renal function in severe septic shock states. Intensive Care Med 19: 151–154PubMedCrossRefGoogle Scholar
  5. 5.
    Badin J, Boulain T, Ehrmann S, et al (2011) Relation between mean arterial pressure and renal function in the early phase of shock: a prospective, explorative cohort study. Crit Care 15: R135PubMedCrossRefGoogle Scholar
  6. 6.
    Pottecher T, Calvat S, Dupont H, et al (2006) Haemodynamic management of severe sepsis: recommendations of the French Intensive Care Societies (SFAR/SRLF) Consensus Conference, 13 October 2005, Paris, France. Crit Care 10:311PubMedCrossRefGoogle Scholar
  7. 7.
    Albanese J, Leone M, Delmas A, et al (2005) Terlipressin or norepinephrine in hyperdynamic septic shock: a prospective, randomized study. Crit Care Med 33: 1897–1902PubMedCrossRefGoogle Scholar
  8. 8.
    Marik PE, Mohedin M (1994) The contrasting effects of dopamine and norepinephrine on systemic and splanchnic oxygen utilization in hyperdynamic sepsis (1994) JAMA 272: 1354–1357PubMedCrossRefGoogle Scholar
  9. 9.
    Deruddre S, Cheisson G, Mazoit JX, Vicaut E, Benhamou D, Duranteau J (2007) Renal arterial resistance in septic shock: effects of increasing mean arterial pressure with norepinephrine on the renal resistive index assessed with Doppler ultrasonography. Intensive Care Med 33: 1557–1562PubMedCrossRefGoogle Scholar
  10. 10.
    Martin C, Papazian L, Perrin G, et al (1993) Norepinephrine or dopamine for the treatment of hyperdynamic septic shock? Chest 103: 1826–1831PubMedCrossRefGoogle Scholar
  11. 11.
    De Backer D, Biston P, Devriendt J, et al (2010) Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med 362: 779–789PubMedCrossRefGoogle Scholar
  12. 12.
    Patel GP, Grahe JS, Sperry M, et al (2010) Efficacy and safety of dopamine versus norepinephrine in the management of septic shock. Shock 33: 375–380PubMedCrossRefGoogle Scholar
  13. 13.
    Levy B, Collin S, Sennoun N, et al (2010) Vascular hyporesponsiveness to vasopressors in septic shock: from bench to bedside. Intensive Care Med 36: 2019–2029PubMedCrossRefGoogle Scholar
  14. 14.
    Julou-Schaeffer G, Gray GA, Fleming I, et al (1990) Loss of vascular responsiveness induced by endotoxin involves L-arginine pathway. Am J Physiol 259: H1038–1043PubMedGoogle Scholar
  15. 15.
    Gray GA, Schott C, Julou-Schaeffer G, et al (1991) The effect of inhibitors of the L-arginine/ nitric oxide pathway on endotoxin-induced loss of vascular responsiveness in anaesthetized rats. Br J Pharmacol 103: 1218–1224PubMedCrossRefGoogle Scholar
  16. 16.
    Hocherl K, Schmidt C, Kurt B, et al (2008) Activation of the PGI(2)/IP system contributes to the development of circulatory failure in a rat model of endotoxic shock. Hypertension 52: 330–335PubMedCrossRefGoogle Scholar
  17. 17.
    Szabo C, Zingarelli B, Salzman AL (1996) Role of poly-ADP ribosyltransferase activation in the vascular contractile and energetic failure elicited by exogenous and endogenous nitric oxide and peroxynitrite. Circ Res 78: 1051–1063PubMedCrossRefGoogle Scholar
  18. 18.
    Macarthur H, Westfall TC, Riley DP, et al (2000) Inactivation of catecholamines by superoxide gives new insights on the pathogenesis of septic shock. Proc Natl Acad Sci USA 97: 9753–9758PubMedCrossRefGoogle Scholar
  19. 19.
    Landry DW, Oliver JA (1992) The ATP-sensitive K+ channel mediates hypotension in endotoxemia and hypoxic lactic acidosis in dog. J Clin Invest 89: 2071–2074PubMedCrossRefGoogle Scholar
  20. 20.
    Annane D, Bellissant E, Sebille V, et al (1998) Impaired pressor sensitivity to noradrenaline in septic shock patients with and without impaired adrenal function reserve. Br J Clin Pharmacol 46: 589–597PubMedCrossRefGoogle Scholar
  21. 21.
    Katsaragakis S, Kapralou A, Theodorou D, et al (2006) Refractory septic shock: efficacy and safety of very high doses of norepinephrine. Methods Find Exp Clin Pharmacol 28: 307–313PubMedCrossRefGoogle Scholar
  22. 22.
    Datta P, Magder S (1999) Hemodynamic response to norepinephrine with and without inhibition of nitric oxide synthase in porcine endotoxemia. Am J Respir Crit Care Med 160: 1987–9193PubMedCrossRefGoogle Scholar
  23. 23.
    Emerson TE Jr (1966) Effects of angiotensin, epinephrine, norepinephrine, and vasopressin on venous return. Am J Physiol 210: 933–942PubMedGoogle Scholar
  24. 24.
    Imai Y, Satoh K, Taira N (1978) Role of the peripheral vasculature in changes in venous return caused by isoproterenol, norepinephrine, and methoxamine in anesthetized dogs. Circ Res 43: 553–561PubMedCrossRefGoogle Scholar
  25. 25.
    Rose JC, Freis ED, Hufnagel CA, et al (1955) Effects of epinephrine and nor-epinephrine in dogs studied with a mechanical left ventricle; demonstration of active vasoconstriction in the lesser circulation. Am J Physiol 182: 197–202PubMedGoogle Scholar
  26. 26.
    Rose JC, Kot PA, Cohn JN, et al (1962) Comparison of effects of angiotensin and norepinephrine on pulmonary circulation, systemic arteries and veins, and systemic vascular capacity in the dog. Circulation 25: 247–252PubMedCrossRefGoogle Scholar
  27. 27.
    De Mey J, Vanhoutte PM (1981) Uneven distribution of postjunctional alpha 1-and alpha 2-like adrenoceptors in canine arterial and venous smooth muscle. Circ Res 48: 875–884PubMedCrossRefGoogle Scholar
  28. 28.
    Greenway CV, Seaman KL, Innes IR (1985) Norepinephrine on venous compliance and unstressed volume in cat liver. Am J Physiol 248: H468–476PubMedGoogle Scholar
  29. 29.
    Guyton AC, Lindsey AW, Abernathy B, et al (1957) Venous return at various right atrial pressures and the normal venous return curve. Am J Physiol 189: 609–615PubMedGoogle Scholar
  30. 30.
    Hamzaoui O, Georger JF, Monnet X, et al (2010) Early administration of norepinephrine increases cardiac preload and cardiac output in septic patients with life-threatening hypotension. Crit Care 14: R142PubMedCrossRefGoogle Scholar
  31. 31.
    Monnet X, Jabot J, Maizel J, et al (2011) Norepinephrine increases cardiac preload and reduces preload dependency assessed by passive leg raising in septic shock patients Crit Care Med 39: 689–694PubMedCrossRefGoogle Scholar
  32. 32.
    Nouira S, Elatrous S, Dimassi S, et al (2005) Effects of norepinephrine on static and dynamic preload indicators in experimental hemorrhagic shock. Crit Care Med 33: 2339–2343PubMedCrossRefGoogle Scholar
  33. 33.
    Sennoun N, Montemont C, Gibot S, et al (2007) Comparative effects of early versus delayed use of norepinephrine in resuscitated endotoxic shock. Crit Care Med 35: 1736–1740PubMedCrossRefGoogle Scholar
  34. 34.
    Boyd JH, Forbes J, Nakada TA, et al (2011) Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med 39: 259–265PubMedCrossRefGoogle Scholar
  35. 35.
    Vincent JL, Sakr Y, Sprung CL, et al (2006) Sepsis in European intensive care units: results of the SOAP study. Crit Care Med 34: 344–353PubMedCrossRefGoogle Scholar
  36. 36.
    Payen D, de Pont AC, Sakr Y, et al (2008) A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care 12: R74PubMedCrossRefGoogle Scholar
  37. 37.
    Wiedemann HP, Wheeler AP, Bernard GR, et al (2006) Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 354: 2564–2575PubMedCrossRefGoogle Scholar
  38. 38.
    Lamia B, Chemla D, Richard C, Tebould JL (2005) Clinical review: Interpretation of arterial pressure wave in shock states. Crit Care 9: 601–606PubMedCrossRefGoogle Scholar
  39. 39.
    Robotham JL, Takata M, Berman M, Harasawa Y (1991) Ejection fraction revisited Anesthesiology 74: 172–183PubMedCrossRefGoogle Scholar
  40. 40.
    De Backer D, Creteur J, Silva E, Vincent JL (2003) Effects of dopamine, norepinephrine, and epinephrine on the splanchnic circulation in septic shock: which is best? Crit Care Med 31: 1659–1667PubMedCrossRefGoogle Scholar
  41. 41.
    Edwards JD, Brown GC, Nightingale P, et al (1989) Use of survivors’ cardiorespiratory values as therapeutic goals in septic shock. Crit Care Med 17: 1098–1103PubMedCrossRefGoogle Scholar
  42. 42.
    Martin C, Viviand X, Arnaud S, et al (1999) Effects of norepinephrine plus dobutamine or norepinephrine alone on left ventricular performance of septic shock patients. Crit Care Med 27: 1708–1713PubMedCrossRefGoogle Scholar
  43. 43.
    Meadows D, Edwards JD, Wilkins RG, et al (1988) Reversal of intractable septic shock with norepinephrine therapy. Crit Care Med 16: 663–666PubMedCrossRefGoogle Scholar
  44. 44.
    Hesselvik JF, Brodin B (1989) Low dose norepinephrine in patients with septic shock and oliguria: effects on afterload, urine flow, and oxygen transport. Crit Care Med 17: 179–180PubMedCrossRefGoogle Scholar
  45. 45.
    Martin C, Saux P, Eon B, et al (1990) Septic shock: a goal-directed therapy using volume loading, dobutamine and/or norepinephrine. Acta Anaesthesiol Scand 34: 413–417PubMedCrossRefGoogle Scholar
  46. 46.
    Winslow EJ, Loeb HS, Rahimtoola SH, et al (1973) Hemodynamic studies and results of therapy in 50 patients with bacteremic shock. Am J Med 54: 421–432PubMedCrossRefGoogle Scholar
  47. 47.
    Dubin A, Pozo MO, Casabella CA, et al (2009) Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study. Crit Care 13: R92PubMedCrossRefGoogle Scholar
  48. 48.
    Jhanji S, Stirling S, Patel N, et al (2009) The effect of increasing doses of norepinephrine on tissue oxygenation and microvascular flow in patients with septic shock. Crit Care Med 37: 1961–1966PubMedCrossRefGoogle Scholar
  49. 49.
    Georger JF, Hamzaoui O, Chaari A, et al (2010) Restoring arterial pressure with norepinephrine improves muscle tissue oxygenation assessed by near-infrared spectroscopy in severely hypotensive septic patients. Intensive Care Med 36: 1882–1889PubMedCrossRefGoogle Scholar
  50. 50.
    Bellomo R, Kellum JA, Wisniewski SR, et al (1999) Effects of norepinephrine on the renal vasculature in normal and endotoxemic dogs. Am J Respir Crit Care Med 159: 1186–1192PubMedCrossRefGoogle Scholar
  51. 51.
    LeDoux D, Astiz ME, Carpati CM, et al (2000) Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med 28: 2729–2732PubMedCrossRefGoogle Scholar
  52. 52.
    Boerma EC, Kuiper MA, Kingma WP, et al (2008) Disparity between skin perfusion and sublingual microcirculatory alterations in severe sepsis and septic shock: a prospective observational study. Intensive Care Med 34: 1294–1298PubMedCrossRefGoogle Scholar
  53. 53.
    Thooft A, Favory R, D Ribeiro Salgado, et al (2011) Effects of changes in arterial pressure on organ perfusion during septic shock. Crit Care 15: R222PubMedCrossRefGoogle Scholar
  54. 54.
    De Backer D, Hollenberg S, Boerma C, et al (2007) How to evaluate the microcirculation: report of a round table conference. Crit Care 11: R101PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • X. Monnet
  • J.-L. Teboul

There are no affiliations available

Personalised recommendations