Gut Microbiome and Host Defense Interactions during Critical Illness

  • T. J. Schuijt
  • T. van der Poll
  • W. J. Wiersinga
Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM, volume 2012)

Abstract

For many years it has been hypothesized that the gut has an important detrimental role in promoting systemic inflammation and infection in the critically ill. During stress and mucosal hypoxia, the mucosa is damaged and host defenses break down causing translocation of bacteria and bacterial toxins which are thought to contribute to the overwhelming inflammation associated with sepsis and multiorgan failure [1, 2]. New emerging data on the role of the microbiome have forced us to reassess the old ‘gut as motor of sepsis’ hypothesis. The gut microbiome consists of a diverse and vast population of microbes that has an important protective impact on immune effector functions during both health and disease (Fig. 1). It has become clear that the intestinal microbiome, consisting of more bacteria than the total number of cells in the human body, can be seen as an exteriorized organ that exerts numerous functions in the host response against infections [3, 4]. In addition to the more localized influence of the microbiome on the intestinal immune system, recent data show that the microbiome also plays a key role in systemic activation of the immune system contributing to the effective killing of invading pathogens [5]. The clinical relevance of these new insights is underscored by the notion that antibiotic treatment — which on any given day is received by almost three quarters of all patients on the intensive care unit (ICU) [6] — can largely deplete the microbiome. This review focuses on key aspects of the role of the intestinal microbiome in the immune response against pathogens and the importance of intestinal homeostasis for critically ill patients.

Keywords

Critical Illness Intestinal Microbiota Multiple Organ Dysfunction Syndrome Paneth Cell Selective Decontamination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Taylor DE (1998) Revving the motor of multiple organ dysfunction syndrome. Gut dysfunction in ARDS and multiorgan failure. Respir Care Clin N Am 4: 611–631PubMedGoogle Scholar
  2. 2.
    Alverdy JC, Chang EB (2008) The re-emerging role of the intestinal microflora in critical illness and inflammation: why the gut hypothesis of sepsis syndrome will not go away. J Leukoc Biol 83: 461–466PubMedCrossRefGoogle Scholar
  3. 3.
    Turnbaugh PJ, Hamady M, Yatsunenko T, et al (2009) A core gut microbiome in obese and lean twins. Nature 457: 480–484PubMedCrossRefGoogle Scholar
  4. 4.
    Qin J, Li R, Raes J, et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59–65PubMedCrossRefGoogle Scholar
  5. 5.
    Clarke TB, Davis KM, Lysenko ES, et al (2010) Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med 16: 228–231PubMedCrossRefGoogle Scholar
  6. 6.
    Vincent JL, Rello J, Marshall J, et al (2009) International study of the prevalence and outcomes of infection in intensive care units. JAMA 302: 2323–2329PubMedCrossRefGoogle Scholar
  7. 7.
    Clark JA, Coopersmith CM (2007) Intestinal crosstalk: a new paradigm for understanding the gut as the “motor” of critical illness. Shock 28: 384–393PubMedCrossRefGoogle Scholar
  8. 8.
    Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI (2011) Human nutrition, the gut microbiome and the immune system. Nature 474: 327–336PubMedCrossRefGoogle Scholar
  9. 9.
    McGuckin MA, Linden SK, Sutton P, Florin TH (2011) Mucin dynamics and enteric pathogens. Nat Rev Microbiol 9: 265–278PubMedCrossRefGoogle Scholar
  10. 10.
    Gill SR, Pop M, Deboy RT, et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312: 1355–1359PubMedCrossRefGoogle Scholar
  11. 11.
    Eckburg PB, Bik EM, Bernstein CN, et al (2005) Diversity of the human intestinal microbial flora. Science 308: 1635–1638PubMedCrossRefGoogle Scholar
  12. 12.
    Arumugam M, Raes J, Pelletier E, et al (2011) Enterotypes of the human gut microbiome. Nature 473: 174–180PubMedCrossRefGoogle Scholar
  13. 13.
    Zoetendal EG, Rajilic-Stojanovic M, de Vos WM (2008) High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 57: 1605–1615PubMedCrossRefGoogle Scholar
  14. 14.
    Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118: 229–241PubMedCrossRefGoogle Scholar
  15. 15.
    Manges AR, Labbe A, Loo VG, et al (2010) Comparative metagenomic study of alterations to the intestinal microbiota and risk of nosocomial Clostridum difficile-associated disease. J Infect Dis 202: 1877–1884PubMedCrossRefGoogle Scholar
  16. 16.
    Tlaskalova-Hogenova H, Stepankova R, Kozakova H, et al (2011) The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammanory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol 8: 110–120PubMedCrossRefGoogle Scholar
  17. 17.
    Gillor O, Etzion A, Riley MA (2008) The dual role of bacteriocins as anti-and probiotics. Appl Microbiol Biotechnol 81: 591–606PubMedCrossRefGoogle Scholar
  18. 18.
    Schaible UE, Kaufmann SH (2005) A nutritive view on the host-pathogen interplay. Trends Microbiol 13: 373–380PubMedCrossRefGoogle Scholar
  19. 19.
    Hamer HM, Jonkers D, Venema K, et al (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27: 104–119PubMedCrossRefGoogle Scholar
  20. 20.
    Wells JM, Rossi O, Meijerink M, van Baarlen P (2011) Epithelial crosstalk at the microbiota-mucosal interface. Proc Natl Acad Sci USA 108 (Suppl 1): 4607–4614PubMedCrossRefGoogle Scholar
  21. 21.
    Abreu MT, Thomas LS, Arnold ET, et al (2003) TLR signaling at the intestinal epithelial interface. J Endotoxin Res 9: 322–330PubMedGoogle Scholar
  22. 22.
    Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124: 783–801PubMedCrossRefGoogle Scholar
  23. 23.
    Lala S, Ogura Y, Osborne C, et al (2003) Crohn’s disease and the NOD2 gene: a role for paneth cells. Gastroenterology 125: 47–57PubMedCrossRefGoogle Scholar
  24. 24.
    Abreu MT (2010) Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol 10: 131–144PubMedCrossRefGoogle Scholar
  25. 25.
    Lee J, Mo JH, Katakura K, et al (2006) Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat Cell Biol 8: 1327–1336PubMedCrossRefGoogle Scholar
  26. 26.
    Vijay-Kumar M, Sanders CJ, et al (2007) Deletion of TLR5 results in spontaneous colitis in mice. J Clin Invest 117: 3909–3921PubMedGoogle Scholar
  27. 27.
    Vijay-Kumar M, Aitken JD, Carvalho FA, et al (2010) Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328: 228–231PubMedCrossRefGoogle Scholar
  28. 28.
    Strugnell RA, Wijburg OL (2010) The role of secretory antibodies in infection immunity. Nat Rev Microbiol 8: 656–667PubMedCrossRefGoogle Scholar
  29. 29.
    Meijer K, de Vos P, Priebe MG (2010) Butyrate and other short-chain fatty acids as modulators of immunity: what relevance for health? Curr Opin Clin Nutr Metab Care 13: 715–721PubMedCrossRefGoogle Scholar
  30. 30.
    Shimizu K, Ogura H, Hamasaki T, et al (2011) Altered gut flora are associated with septic complications and death in critically ill patients with systemic inflammatory response syndrome. Dig Dis Sci 56: 1171–1177PubMedCrossRefGoogle Scholar
  31. 31.
    Shimizu K, Ogura H, Goto M, et al (2006) Altered gut flora and environment in patients with severe SIRS. J Trauma 60: 126–133PubMedCrossRefGoogle Scholar
  32. 32.
    Shimizu K, Ogura H, Tomono K, et al (2011) Patterns of Gram-stained fecal flora as a quick diagnostic marker in patients with severe SIRS. Dig Dis Sci 56: 1782–1788PubMedCrossRefGoogle Scholar
  33. 33.
    Hotchkiss RS, Swanson PE, Freeman BD, et al (1999) Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med 27: 1230–1251PubMedCrossRefGoogle Scholar
  34. 34.
    Coopersmith CM, Stromberg PE, Dunne WM, et al (2002) Inhibition of intestinal epithelial apoptosis and survival in a murine model of pneumonia-induced sepsis. JAMA 287: 1716–1721PubMedCrossRefGoogle Scholar
  35. 35.
    Morowitz MJ, Carlisle EM, Alverdy JC (2011) Contributions of intestinal bacteria to nutrition and metabolism in the critically ill. Surg Clin North Am 91: 771–785PubMedCrossRefGoogle Scholar
  36. 36.
    Sommer MO, Dantas G (2011) Antibiotics and the resistant microbiome. Curr Opin Microbiol 14: 556–563PubMedCrossRefGoogle Scholar
  37. 37.
    Hill DA, Hoffmann C, Abt MC, et al (2010) Metagenomic analyses reveal antibioticinduced temporal and spatial changes in intestinal microbiota with associated alterations in immune cell homeostasis. Mucosal Immunol 3: 148–158PubMedCrossRefGoogle Scholar
  38. 38.
    Brandl K, Plitas G, Mihu CN, et al (2008) Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455: 804–807PubMedCrossRefGoogle Scholar
  39. 39.
    Willing BP, Russell SL, Finlay BB (2011) Shifting the balance: antibiotic effects on hostmicrobiota mutualism. Nat Rev Microbiol 9: 233–243PubMedCrossRefGoogle Scholar
  40. 40.
    Ubeda C, Taur Y, Jenq RR, et al (2010) Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest 120: 4332–4341PubMedCrossRefGoogle Scholar
  41. 41.
    de Jonge E, Schultz MJ, Spanjaard L, et al (2003) Effects of selective decontamination of digestive tract on mortality and acquisition of resistant bacteria in intensive care: a randomised controlled trial. Lancet 362: 1011–1016PubMedCrossRefGoogle Scholar
  42. 42.
    de Smet AM, Bonten MJ (2008) Selective decontamination of the digestive tract. Curr Opin Infect Dis 21: 179–183PubMedCrossRefGoogle Scholar
  43. 43.
    Vincent JL, Jacobs F (2011) Effect of selective decontamination on antibiotic resistance. Lancet Infect Dis 11: 337–338PubMedCrossRefGoogle Scholar
  44. 44.
    Palmer R (2011) Fecal matters. Nat Med 17: 150–152PubMedCrossRefGoogle Scholar
  45. 45.
    Khoruts A, Sadowsky MJ (2011) Therapeutic transplantation of the distal gut microbiota. Mucosal Immunol 4: 4–7PubMedCrossRefGoogle Scholar
  46. 46.
    de Jong HK, van der Poll T, Wiersinga WJ (2010) The systemic pro-inflammatory response in sepsis. J Innate Immun 2: 422–430PubMedCrossRefGoogle Scholar
  47. 47.
    Philpott DJ, Girardin SE (2010) Gut microbes extend reach to systemic innate immunity. Nat Med 16: 160–161PubMedCrossRefGoogle Scholar
  48. 48.
    Morrow LE, Kollef MH, Casale TB (2010) Probiotic prophylaxis of ventilator-associated pneumonia: a blinded, randomized, controlled trial. Am J Respir Crit Care Med 182: 1058–1064PubMedCrossRefGoogle Scholar
  49. 49.
    Morrow LE (2009) Probiotics in the intensive care unit. Curr Opin Crit Care 15: 144–148PubMedCrossRefGoogle Scholar
  50. 50.
    Besselink MG, van Santvoort HC, Buskens E, et al (2008) Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. Lancet 371: 651–659PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • T. J. Schuijt
  • T. van der Poll
  • W. J. Wiersinga

There are no affiliations available

Personalised recommendations