Mathematical Pictures: Visualization, Art and Outreach

  • John M. SullivanEmail author


Mathematicians have used pictures for thousands of years, to aid their own research and to communicate their results to others. We examine the different types of pictures used in mathematics, their relation to mathematical art and their use in outreach activities. (This article is based on a talk on 28 September 2010 at the conference Raising Public Awareness of Mathematics in Óbidos.)


Soap Film Round Sphere Bubble Cluster Geometric Diagram Transparent Rendering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alsina, C., Nelsen, R.B.: An invitation to proofs without words. Eur. J. Pure Appl. Math. 3, 118–127 (2010) MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bobenko, A.I., Schröder, P., Sullivan, J.M., Ziegler, G.M. (eds.): Discrete Differential Geometry. Oberwolfach Seminars, vol. 38. Birkhäuser, Basel (2008) Google Scholar
  3. 3.
    Francis, G.: A Topological Picturebook. Springer, Berlin (1987) zbMATHGoogle Scholar
  4. 4.
    Francis, G., Sullivan, J.M., Kusner, R.B., Brakke, K.A., Hartman, C., Chappell, G.: The minimax sphere eversion. In: Hege, H.-C., Polthier, K. (eds.) Visualization and Mathematics, pp. 3–20. Springer, Berlin (1997) CrossRefGoogle Scholar
  5. 5.
    Gooch, B., Gooch, A.: Non-photorealistic Rendering. AK Peters, Wellesley (2001) zbMATHGoogle Scholar
  6. 6.
    Hutchings, M., Morgan, F., Ritoré, M., Ros, A.: Proof of the double bubble conjecture. Ann. Math. 155, 459–489 (2002). doi: 10.2307/3062123 zbMATHCrossRefGoogle Scholar
  7. 7.
    Hass, J., Schlafly, R.: Double bubbles minimize. Ann. Math. 151, 459–515 (2000). doi: 10.2307/121042 MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Hertzmann, A., Zorin, D.: Illustrating smooth surfaces. In: SIGGRAPH, pp. 517–526 (2000) CrossRefGoogle Scholar
  9. 9.
    Phillips, T.: Math in the Media (April 2007).
  10. 10.
    Sullivan, J.M., Francis, G., Levy, S.: The Optiverse. In: Hege, Polthier (eds.) VideoMath Festival at ICM’98. Springer, Berlin (1998). Narrated videotape (7 min) Google Scholar
  11. 11.
    Sullivan, J.M., Morgan, F.: Open problems in soap bubble geometry. Int. J. Math. 7(6), 833–842 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Sullivan, J.M.: Minimal flowers. In: Bridges Proceedings (Pécs), pp. 395–398 (2010) Google Scholar
  13. 13.
    Winkenbach, G., Salesin, D.: Computer-generated pen-and-ink illustration. In: SIGGRAPH, pp. 91–100 (1994) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut für MathematikTechnische Universität BerlinBerlinGermany

Personalised recommendations