Comparing MIQCP Solvers to a Specialised Algorithm for Mine Production Scheduling

  • Andreas Bley
  • Ambros M. Gleixner
  • Thorsten Koch
  • Stefan Vigerske
Conference paper


This paper investigates the performance of several out-of-the-box solvers for mixed-integer quadratically constrained programmes (MIQCPs) on an open pit mine production scheduling problem with mixing constraints. We compare the solvers BARON, Couenne, SBB, and SCIP to a problem-specific algorithm on two different MIQCP formulations. The computational results presented show that general-purpose solvers with no particular knowledge of problem structure are able to nearly match the performance of a hand-crafted algorithm.


Dual Bound Mixed Integer Nonlinear Programming Benchmark Algorithm Nonconvex MINLPs Constraint Integer Programming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Abhishek, S. Leyffer, and J.T. Linderoth. FilMINT: An outer-approximation-based solver for nonlinear mixed integer programs. Technical Report ANL/MCS-P1374-0906, Argonne National Laboratory, 2006.Google Scholar
  2. 2.
    T. Achterberg. Constraint Integer Programming. PhD thesis, TU Berlin, 2007.Google Scholar
  3. 3.
    ARKI Consulting & Development A/S. CONOPT and SBB.
  4. 4.
    P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter. Branching and bounds tightening techniques for non-convex MINLP. Optimization Methods and Software, 24(4-5):597–634, 2009MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    T. Berthold, S. Heinz, and S. Vigerske. Extending a CIP framework to solve MIQCPs. Technical Report 09-23, Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB), 2009.
  6. 6.
    A. Bley, N. Boland, G. Froyland, and M. Zuckerberg. Solving mixed integer nonlinear programming problems for mine production planning with a single stockpile. Technical Report 2009/21, Institute of Mathematics, TU Berlin, 2009.Google Scholar
  7. 7.
    A. Bley, A.M. Gleixner, T. Koch, and S. Vigerske. Comparing MIQCP solvers to a specialised algorithm for mine production scheduling. Technical Report 09-32, Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB), October 2009.
  8. 8.
    N. Boland, I. Dumitrescu, G. Froyland, and A.M. Gleixner. LP-based disaggregation approaches to solving the open pit mining production scheduling problem with block processing selectivity. Comp. & Oper. Research, 36:1064–1089, 2009.zbMATHCrossRefGoogle Scholar
  9. 9.
    P. Bonami, L.T. Biegler, A.R. Conn, G. Cornuéjols, I.E. Grossmann, C.D. Laird, J. Lee, A. Lodi, F. Margot, N. Sawaya, and A. Wächter. An algorithmic framework for convex mixed integer nonlinear programs. Disc. Opt., 5:186–204, 2008.zbMATHCrossRefGoogle Scholar
  10. 10.
    O. Exler and K. Schittkowski. A trust region sqp algorithm for mixed-integer nonlinear programming. Optimization Letters, 1:269–280, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    J.J. Forrest. CLP and CBC.{Clp,Cbc}/.
  12. 12.
    C. Fricke. Applications of Integer Programming in Open Pit Mining. PhD thesis, University of Melbourne, August 2006.Google Scholar
  13. 13.
    A.M. Gleixner. Solving large-scale open pit mining production scheduling problems by integer programming. Master’s thesis, TU Berlin, June 2008.Google Scholar
  14. 14.
  15. 15.
    B.A. Murtagh and M.A. Saunders. MINOS 5.5 User’s Guide. Department of Operations Research, Stanford University, 1998. Report SOL 83-20R.Google Scholar
  16. 16.
    I. Nowak and S. Vigerske. LaGO: a (heuristic) branch and cut algorithm for nonconvex MINLPs. Central Europ. J. of Oper. Research, 16(2):127–138, 2008.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    M.G. Osanloo, J. Gholamnejad, and B. Karimi. Long-term open pit mine production planning: a review of models and algorithms. International Journal of Mining, Reclamation and Environment, 22(1):3–35, 2008.CrossRefGoogle Scholar
  18. 18.
    S. Ramazan. The new fundamental tree algorithm for production scheduling of open pit mines. European Journal of Oper. Research, 177(2):1153–1166, 2007.zbMATHCrossRefGoogle Scholar
  19. 19.
    M. Tawarmalani and N.V. Sahinidis. Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Kluwer Academic Publishers, 2002.Google Scholar
  20. 20.
    A. Wächter and L.T. Biegler. On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1):25–57, 2006.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andreas Bley
    • 1
  • Ambros M. Gleixner
    • 2
  • Thorsten Koch
    • 2
  • Stefan Vigerske
    • 3
  1. 1.Technische Universität BerlinBerlinGermany
  2. 2.Zuse Institute BerlinBerlinGermany
  3. 3.Humboldt-Universität zu BerlinBerlinGermany

Personalised recommendations