Advertisement

A Multi-criteria Approach for Automatic Ontology Recommendation Using Collective Knowledge

  • Marcos Martínez-Romero
  • José M. Vázquez-Naya
  • Javier Pereira
  • Alejandro Pazos
Chapter
Part of the Intelligent Systems Reference Library book series (ISRL, volume 32)

Abstract

Nowadays, ontologies are considered an important tool for knowledge structuring and reusing, especially in domains in which the proper organization and processing of information are critical issues (e.g. biomedicine). In these domains, the number of available ontologies has grown rapidly during the last years. This is very positive because it enables a more effective (or more intelligent) knowledge management. However, it raises a new problem: what ontology should be used for a given task? In this work, an approach for the automatic recommendation of ontologies is proposed. This approach is based on measuring the adequacy of an ontology to a given context according to three independent criteria: (i) the extent to which the ontology covers the context, (ii) the semantic richness of the ontology in the context, and (iii) the popularity of the ontology in the Web 2.0. Results show the importance of using collective knowledge in the fields of ontology evaluation and recommendation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sabou, M., Lopez, V., Motta, E., Uren, V.: Ontology Selection: Ontology Evaluation on the Real Semantic Web. In: Evaluation of Ontologies on the Web Workshop, Held in Conjunction with WWW 2006, Edinburgh, Scotland (2006)Google Scholar
  2. 2.
    Gómez-Pérez, A.: Some Ideas and Examples to Evaluate Ontologies. In: 11th IEEE Conference on Artificial Intelligence Applications, pp. 299–305. IEEE Computer Society Press, Los Angeles (1995)Google Scholar
  3. 3.
    Gómez-Pérez, A.: From Knowledge Based Systems to Knowledge Sharing Technology. In: Evaluation and Assessment. KSL Lab, Stanford University, CA (1994)Google Scholar
  4. 4.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic Web. Scientific American 284(5), 34–43 (2001)CrossRefGoogle Scholar
  5. 5.
    Supekar, K., Patel, C., Lee, Y.: Characterizing Quality of Knowledge on Semantic Web. In: Seventeenth International FLAIRS Conference, Miami, Florida, USA, pp. 220–228 (2004)Google Scholar
  6. 6.
    Alani, H., Noy, N., Shah, N., Shadbolt, N., Musen, M.: Searching Ontologies Based on Content: Experiments in the Biomedical Domain. In: Fourth International Conference on Knowledge Capture (K-Cap), Whistler, BC, Canada, pp. 55–62. ACM Press (2007)Google Scholar
  7. 7.
    Alani, H., Brewster, C., Shadbolt, N.R.: Ranking Ontologies with aKTiveRank. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 1–15. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Netzer, Y., Gabay, D., Adler, M., Goldberg, Y., Elhadad, M.: Ontology Evaluation through Text Classification. In: Chen, L., Liu, C., Zhang, X., Wang, S., Strasunskas, D., Tomassen, S.L., Rao, J., Li, W.-S., Candan, K.S., Chiu, D.K.W., Zhuang, Y., Ellis, C.A., Kim, K.-H. (eds.) WCMT 2009. LNCS, vol. 5731, pp. 210–221. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Vilches-Blázquez, L., Ramos, J., López-Pellicer, F., Corcho, O., Nogueras-Iso, J.: An Approach to Comparing Different Ontologies in the Context of Hydrographical Information. In: Heidelberg, S.B. (ed.) Information Fusion and Geographic Information Systems. Lecture Notes in Geoinformation and Cartography, vol. 4, pp. 193–207. Springer, Berlin (2009)CrossRefGoogle Scholar
  10. 10.
    Jonquet, C., Musen, M., Shah, N.: Building a Biomedical Ontology Recommender Web Service. Journal of Biomedical Semantics (S1), 1–18 (2010)Google Scholar
  11. 11.
    Sabou, M., Lopez, V., Motta, E.: Ontology Selection for the Real Semantic Web: How to Cover the Queen’s Birthday Dinner? In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS (LNAI), vol. 4248, pp. 96–111. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Brank, J., Grobelnik, M., Mladenic, D.A.: Survey of Ontology Evaluation Techniques. In: Conference on Data Mining and Data Warehouses (SiKDD 2005), Ljubljana, Slovenia (2005)Google Scholar
  13. 13.
    Jones, M., Alani, H.: Content-based ontology ranking. In: 9th Int. Protégé Conference, Stanford, CA (2006)Google Scholar
  14. 14.
    Romero, M.M., Vázquez -Naya, J.M., Munteanu, C.R., Pereira, J., Pazos, A.: An Approach for the Automatic Recommendation of Ontologies Using Collaborative Knowledge. In: Setchi, R., Jordanov, I., Howlett, R.J., Jain, L.C. (eds.) KES 2010. LNCS, vol. 6277, pp. 74–81. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Studer, R., Benjamins, V.R., Fensel, D.: Knowledge Engineering: Principles and Methods. IEEE Transactions on Data & Knowledge Engineering 25(1-2), 161–197 (1998)zbMATHCrossRefGoogle Scholar
  16. 16.
    Liu, H., Hussain, F., Tan, C., Dash, M.: Discretization: An Enabling Technique. Data Mining and Knowledge Discovery 6(4), 393–423 (2002)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Daniel, W., Wayne, W.: Biostatistics: a Foundation for Analysis in the Health Sciences, 9th edn. John Wiley and Sons, New York (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marcos Martínez-Romero
    • 1
  • José M. Vázquez-Naya
    • 1
  • Javier Pereira
    • 1
  • Alejandro Pazos
    • 2
  1. 1.IMEDIR CenterUniversity of A CoruñaA CoruñaSpain
  2. 2.Department of Information and Communication Technologies, Computer Science FacultyUniversity of A CoruñaA CoruñaSpain

Personalised recommendations