Incorporating an Ambient Agent to Support People with a Cognitive Vulnerability

  • Azizi Ab Aziz
  • Michel C. A. Klein
Part of the Studies in Computational Intelligence book series (SCI, volume 396)


This article presents the design of an intelligent agent application aimed at supporting people with a cognitive vulnerability to prevent the onset of a depression. For this, a computational model of the cognitive processes around depression is used. The agent application uses the principles of Rational Emotive Behavioural Therapy (RBET). The effect of the application is studied using software simulation. The simulation shows that a person that responds to REBT therapy develops less cognitive vulnerability than people that are not supported.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramson, L.Y., Alloy, L.B., Hogan, M.E., Whitehouse, W.G., Donovan, P., Rose, D.T., Panzarella, C., Raniere, D.: Cognitive vulnerability to depression: Theory and evidence. Journal of Cognitive Psychotherapy 13, 5–20 (1999)Google Scholar
  2. Abramson, L.Y., Metalsky, G.I., Alloy, L.B.: Hopelessness depression: a theory-based subtype of depression. Psychol. Rev. 96, 358–372 (1989)CrossRefGoogle Scholar
  3. Alloy, L.B., Abramson, L.Y., Gibb, B.E., Crossfield, A.G., Pieracci, A.M., Spasojevic, J., Steinberg, J.A.: Developmental antecedents of cognitive vulnerability to depression: Review of findings from the cognitive vulnerability to depression project. Journal of Cognitive Psychotherapy 18(2), 115–133 (2004)CrossRefGoogle Scholar
  4. Alloy, L.B., Abramson, L.Y., Tashman, N.A., Berrebbi, D.S., Hogan, M.E., Whitehouse, W.G., et al.: Developmental origins of cognitive vulnerability to depression: Parenting, cognitive, and inferential feedback styles of the parents of individuals at high and low cognitive risk for depression. Cognitive Therapy and Research 25(4), 397–423 (2001)CrossRefGoogle Scholar
  5. Aziz, A.A., Klein, M.C.A., Treur, J.: An Agent Model of Temporal Dynamics in Relapse and Recurrence in Depression. In: Ali, M., Chen, S.M., Chien, B.C., Hong, T.P. (eds.) IEA-AIE 2009, Springer, Heidelberg (2009)Google Scholar
  6. Aziz, A.A., Klein, M.C.A., Treur, J.: An Integrative Ambient Agent Model for Unipolar Depression Relapse Prevention. Journal of Ambient Intelligence And Smart Environments 2, 5–20 (2010)Google Scholar
  7. Aziz, A.A., Treur, J.: Modelling Dynamics of Social Support Networks for Mutual Support in Coping with Stress. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS, vol. 5796, pp. 167–179. Springer, Heidelberg (2009)Google Scholar
  8. Beck, A.T.: Cognitive Models of Depression. Journal of Cognitive Psychotherapy 1, 5–37 (1987)Google Scholar
  9. Bolger, N., Amarel, D.: Effects of social support visibility on adjustment to stress: experimental evidence. Journal of Personality and Social Psychology 92, 458–475 (2007)CrossRefGoogle Scholar
  10. Bosse, T., Jonker, C.M., van der Meij, L., Sharpanskykh, A., Treur, J.: Specification and Verification of Dynamics in Agent Models. International Journal of Cooperative Information Systems 18, 167–193 (2009)CrossRefGoogle Scholar
  11. Bosse, T., Jonker, C.M., van der Meij, L., Treur, J.: A Language and Environment for Analysis of Dynamics by Simulation. International Journal of Artificial Intelligence Tools 16, 435–464 (2007)CrossRefGoogle Scholar
  12. Bosse, T., Hoogendoorn, M., Klein, M., Treur, J.: A Generic Agent Architecture for Human-Aware Ambient Computing. In: Mangina, E., Carbo, J., Molina, J.M. (eds.) Agent-Based Ubiquitous Computing. Ambient and Pervasive Intelligence, vol. 1, pp. 35–62. World Scientific Publishers: Atlantis Press (2009)Google Scholar
  13. Both, F., Hoogendoorn, M., Klein, M.C.A., Treur, J.: Design and Analysis of an Ambient Intelligent System Supporting Depression Therapy. In: Azevedo, L., Londral, A.R. (eds.) Proceedings of the Second International Conference on Health Informatics, HEALTHINF 2009, pp. 142–148. INSTICC Press (2009)Google Scholar
  14. Brilman, E.I., Ormel, J.: Life Events, Difficulties, and Onset of Depressive Episodes in Later Life. Psychological Medicine 31 (2001)Google Scholar
  15. Coyne, J.C.: Interpersonal process in depression. In: Keitner, G.I. (ed.) Depression and Families: Impact and Treatment, pp. 31–53. American Psychiatric Press, Washington (1990)Google Scholar
  16. Crossfield, A.G., Alloy, L.B., Gibb, B.E., Abramson, L.Y.: The Development of Depressogenic Cognitive Styles: The Role of Negative Childhood Life Events And Parental Inferential Feedback. Journal of Cognitive Psychotherapy 16(4), 487–502 (2002)CrossRefGoogle Scholar
  17. DeFronzo, R., Panzarella, C., Butler, A.C.: Attachment, support seeking, and adaptive feedback: Implications for psychological health. Cognitive and Behavioral Practice 8, 48–52 (2001)CrossRefGoogle Scholar
  18. Dobkin, R.D., Panzarella, C.J., Alloy, L.B., Cascardi, M.: Adaptive Inferential Feedback, Depressogenic Inferences, And Depressed Mood: A Laboratory Study of The Expanded Hopelessness Theory of Depression. Cognitive Therapy And Research, 487–509 (2004)Google Scholar
  19. Ellis, A.: Can rational emotive behavior therapy (REBT) be effectively used with people who have devout beliefs in God and religion? Professional Psychology: Research and Practice 31(1), 29–33 (2000)CrossRefGoogle Scholar
  20. Ellis, A.: Early Theories And Practices of Rational Emotive Behaviour Theory And How They Have Been Augmented And Revised During The Last Three Decades. Journal of Rational-Emotive & Cognitive-Behaviour Therapy 21(3/4) (2003)Google Scholar
  21. Fairclough, S.H.: Fundamentals of physiological computing. Interacting with Computers 21(1-2), 133–145 (2009)CrossRefGoogle Scholar
  22. Heller, K., Rook, K.S.: Distinguishing the theoretical functions of social ties: Implications for support interventions. In: Duck, S. (ed.) Handbook of personal relationships: Theory, Research, and Interventions, pp. 649–670. John Wiley and Sons, Chichester (1997)Google Scholar
  23. Lyons, L.C., Woods, P.J.: The efficacy of rational-emotive therapy: A quantitative review of the outcome research. Clinical Psychology Review 11, 357–369 (1991)CrossRefGoogle Scholar
  24. Nolen-Hoeksema, S.: Ruminative responses predict depressive disorders. Journal of Abnormal Psychology 109, 504–511 (2000)CrossRefGoogle Scholar
  25. Panzarella, C., Alloy, L.B.: Social support, hopelessness, and depression: An expanded hopelessness model. In: Alloy, L.B. (ed.) The Hopelessness Theory of Depression: New Developments in Theory and Research, 29th Annual Convention of the Association for Advancement of Behaviour Therapy, Washington, DC (1995)Google Scholar
  26. Panzarella, C., Alloy, L.B., Whitehouse, W.G.: Expanded hopelessness theory of depression: On the mechanisms by which social support protects against depression. Cognitive Therapy and Research 30(3), 307–333 (2006)CrossRefGoogle Scholar
  27. Picard, R.W., Vyzas, E., Healey, J.: Towards machine emotional intelligence: analysis of affective physiological state. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(10) (2001)Google Scholar
  28. Roberts, J.E., Gotlib, I.H.: Social support and personality in depression: Implications from quantitative genetics. In: Pierce, R., Lakey, B., Sarason, I.G., Sarason, B.R. (eds.) Sourcebook of Social Support and Personality, pp. 187–214. Plenum Press, New York (1997)CrossRefGoogle Scholar
  29. Robinson, M.S., Alloy, L.B.: Negative cognitive styles and stress-reactive rumination interact to predict depression: A prospective study. Cognitive Therapy & Research 27(3), 275–292 (2003)CrossRefGoogle Scholar
  30. Segal, V.Z., Pearson, L.J., Thase, M.E.: Challenges in Preventing Relapse in Major Depression: Report of a National Institute of Mental Health Workshop on State of the Science of Relapse Prevention in Major Depression. Journal of Affective Disorders 77, 97–108 (2003)CrossRefGoogle Scholar
  31. Spasojevic, J., Alloy, L.B.: Rumination as A Common Mechanism Relating Depressive Risk Factors To Depression. Emotion 1(1), 25–37 (2001)CrossRefGoogle Scholar
  32. Treur, J.: On Human Aspects in Ambient Intelligence. In: Proceedings of the First International Workshop on Human Aspects in Ambient Intelligence. In: Mühlhäuser, M., Ferscha, A., Aitenbichler, E. (eds.) Constructing Ambient Intelligence: AmI 2007 Workshops Proceedings. CCIS, vol. 11, pp. 262–267. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  33. Zhai, J., Barreto, A.B.: Instrumentation for automatic monitoring of affective state in human-computer interaction. In: Zhai, J., Barreto, A.B. (eds.) 18th International Florida Artificial Intelligence Research Society Conference, pp. 207–212 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Azizi Ab Aziz
    • 1
    • 2
  • Michel C. A. Klein
    • 1
  1. 1.Agent Systems Research Group, Department of Artificial Intelligence Faculty of SciencesVrije Universiteit AmsterdamAmsterdamThe Netherlands
  2. 2.Artificial Intelligence Research Group, School of Computing, College of Arts and SciencesUniversiti Utara MalaysiaSintokMalaysia

Personalised recommendations