28th International Symposium on Shock Waves pp 569-575 | Cite as
Visualizing the Supersonic Flow around a Microvortex Generator
Conference paper
Introduction
Microvortex generators (MVGs) have been proposed as devices for alleviating the adverse effects of shock/boundary-layer interactions [1]. MVGs in supersonic flow are generally skewed tetrahedral protuberanceswhose height is less than the boundary layer thickness (Fig. 1). Anderson et al. [1] providedMVG design guidelines, such as the standoff distance from an MVG array to the shock impingement location.
Keywords
Particle Image Velocimetry Supersonic Flow AIAA Paper Standoff Distance Horseshoe Vortex
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Anderson, B.H., Tinapple, J., Sorber, L.: Optimal Control of Shock Wave Turbulent Boundary Layer Interactions using Micro-Array Actuation. AIAA Paper 2006–3197 (2006)Google Scholar
- 2.Li, Q., Liu, C.: Declining Angle Effects of the Trailing Edge of a Microramp Vortex Generator. J Aircraft 47(6), 2086–2095 (2010)CrossRefGoogle Scholar
- 3.Blinde, P.L., Humble, R.A., van Oudheusden, B.W., Scarano, F.: Effect of Micro-Ramps on a Shock Wave/Turbulent Boundary Layer Interaction. Shock Waves 19(6), 507–520 (2009)CrossRefGoogle Scholar
- 4.Pierce, A.J.: Experimental Study of Micro-Vortex Generators at Mach 2.5. MSAE thesis. Univ. Texas Arlington (2010)Google Scholar
- 5.Lu, F.K., Pierce, A.J., Shih, Y., Liu, C., Li, Q.: Experimental and Numerical Study of Flow Topology Past Micro Vortex Generators. AIAA Paper 2010–4463 (2010a)Google Scholar
- 6.Lu, F.K., Pierce, A.J., Shih, Y.: Experimental Study of Near Wake of Micro Vortex Generators in Supersonic Flow. AIAA Paper 2010–4623 (2010b)Google Scholar
- 7.Pierce, A.J., Lu, F.K., Bryant, D.S., Shih, Y.: New Developments in Surface Oil Flow Visualization. AIAA Paper 2010–4353 (2010)Google Scholar
- 8.Pierce, A.J., Lu, F.K.: New Seeding and Surface Treatment Methods for Particle Image Velocimetry. AIAA Paper 2011–1164 (2011)Google Scholar
- 9.Elfstrom, G.M.: Turbulent Hypersonic Flow at a Wedge-Compression Corner. J. Fluid Mech. 53(1), 113–127 (1972)CrossRefGoogle Scholar
- 10.Babinsky, H., Li, Y., Pitt Ford, C.: Microramp Control of Supersonic Oblique Shock-Wave/Boundary-Layer Interactions. AIAA J. 47(3), 668–675 (2009)CrossRefGoogle Scholar
- 11.Herges, T., Kroeker, E., Elliott, G., Dutton, C.: Microramp Flow Control of Normal Shock/Boundary-Layer Interactions. AIAA J. 48(11), 2529–2542 (2010)CrossRefGoogle Scholar
- 12.Tobak, M., Peake, D.J.: Topology of Three-Dimensional Separated Flows. Ann. Rev. Fluid Mech. 14, 61–85 (1982)MathSciNetCrossRefGoogle Scholar
- 13.Crawford, J.D., Knobloch, E.: Symmetry and Symmetry-Breaking Bifurcations in Fluid Dynamics. Ann. Rev. Fluid. Mech. 23, 341–387 (1991)MathSciNetCrossRefGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2012