Surface Flow Visualization of a Side-Mounted NACA 0012 Airfoil in a Transonic Ludwieg Tube

  • F. K. Lu
  • E. M. Braun
  • T. S. Balcazar
Conference paper

Introduction

Transonic testing is confronted with numerous challenges such as the need to match fullscale Mach and Reynolds numbers, as well as to ensure interference-free flow. Various methods such as porous [1] or adaptive walls [2, 3] are used for the latter. More modern methods involve a combination of “corrections” using numerical simulations [4]. While cryogenic tunnels are used for industrial purposes [5, 6], small Ludwieg tube tunnels have an important role in wind tunnel testing [7].

Keywords

Wind Tunnel Test Section Plenum Chamber Charge Tube Ludwieg Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Knechtel, E.D.: Experimental investigation at transonic speeds of pressure distributions over wedge and circular-arc airfoil sections and evaluation of perforated-wall. NASA-TN-D-15 (1959)Google Scholar
  2. 2.
    Sears, W.R., Erickson Jr., J.C.: Adaptive wind tunnels. Ann. Rev. Fluid Mech. 20, 17–32 (1988)CrossRefGoogle Scholar
  3. 3.
    Meyer, O., Nitsche, W.: Update on progress in adaptive wind tunnel wall technology. Prog. Aerosp. Sci. 40(3), 119–141 (2004)CrossRefGoogle Scholar
  4. 4.
    Bosnyakov, S., Kursakov, I., Lysenkov, A., Matyash, S., Mikhailov, S., Vlasenko, V., Quest, J.: Computational tools for supporting the testing of civil aircraft configurations in wind tunnels. Prog. Aerosp. Sci. 44(2), 67–120 (2008)CrossRefGoogle Scholar
  5. 5.
    Goodyer, M.J.: The cryogenic wind tunnel. Prog. Aerosp. Sci. 29(3), 193–220 (1992)CrossRefGoogle Scholar
  6. 6.
    Rudnik, R., Germain, E.: Reynolds number scaling effects on the European High-Lift Project configurations. J. Aircraft 46(4), 1140–1151 (2009)CrossRefGoogle Scholar
  7. 7.
    Squire, L.C.: A review of the role of some small high-speed wind tunnels in aeronautical research. Prog. Aerosp. Sci. 34(3-4), 107–166 (1998)CrossRefGoogle Scholar
  8. 8.
    Ludwieg, H.: Tube wind-tunnel: a special type of blowdown tunnel. AGARD-R-143 (1957)Google Scholar
  9. 9.
    Schneider, S.P., Haven, C.E.: Quiet-flow Ludwieg tube for high-speed transition research. AIAA J. 33(4), 688–693 (1975)CrossRefGoogle Scholar
  10. 10.
    Starr, R.F.: Experiments to assess the influence of changes in the tunnel wall boundary layer on transonic wall crossflow characteristics. AEDC-TR-75-97 (1975)Google Scholar
  11. 11.
    Merzkirch, W.: Flow Visualization. Academic, Orlando, Florida (1987)Google Scholar
  12. 12.
    Lepicovsky, J.: Investigation of flow separation in a transonic-fan linear cascade using visualization methods. Exp. Fluids 44(6), 939–949 (2008)CrossRefGoogle Scholar
  13. 13.
    Pierce, A.J., Lu, F.K., Bryant, D.S., Shih, Y.: New developments in surface oil flow visualization. AIAA Paper 2010-4353 (2010)Google Scholar
  14. 14.
    Harris, C.D.: Two-dimensional aerodynamic characteristics of the NACA 0012 airfoil in the Langley 8-foot Transonic Pressure Tunnel. NASA TM-81927 (1981)Google Scholar
  15. 15.
    Mineck, R.E., Hartwich, P.M.: Effect of full-chord porosity on aerodynamic characteristics of the NACA 0012 airfoil. NASA TP-3591 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • F. K. Lu
    • 1
  • E. M. Braun
    • 1
  • T. S. Balcazar
    • 1
  1. 1.Aerodynamics Research Center, Mechanical and Aerospace Engineering DepartmentUniversity of Texas at ArlingtonArlingtonUSA

Personalised recommendations