Flame-Acoustic Interaction

  • V. V. Golub
  • D. I. Baklanov
  • S. V. Golovastov
  • K. V. Ivanov
  • M. F. Ivanov
  • A. D. Kiverin
  • V. V. Volodin
Conference paper

Introduction

One of the topical scientific and technical problems concerning combustion processes is to study flame acceleration and deceleration phenomena. These effects play a great role in deflagration-to-detonation transition (DDT) and can be utilized for combustion regimes control in engines or other technical power equipment (speed control, products outlet control etc.). One of the leading roles in flame acceleration belongs to hydrodynamic factors [1]. A large amount of publications concern turbulence role in flame evolution (e.g. [2, 3]), however there are still no clear theory of turbulent combustion. Combined influence of flame instability and acoustic perturbations creates sufficiently complex evolution of the flame front propagation through the channel that can trigger DDT [4]. Detonation formation and propagation behavior depends on the scale of gas volume where detonation occurs. One can find data for wide range of detonation volumes from sub-cell [5] to 103 cells [6] sizes.

Keywords

Turbulent Combustion Combustion Regime Acoustic Perturbation Luminosity Peak Ignition Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Salamandra, G.D., Bazhenova, T.V., Naboko, I.M.: Proc. Combust. Inst. 7, 851–859 (1959)Google Scholar
  2. 2.
    Peters, N.: Turbulent Combustion. Cambridge University Press, U.K. (2000)MATHCrossRefGoogle Scholar
  3. 3.
    Clavin, P., Williams, F.A.: J. Fluid Mech. 90(3), 589–604 (1979)MATHCrossRefGoogle Scholar
  4. 4.
    Ze’ldovich, Y.B.: JTP 17(1), 3–19 (1947)Google Scholar
  5. 5.
    Kitano, S., Fukao, M., Susa, A., Tsuboi, N., Hayashi, A.K., Koshi, M.: Proc. Combust. Inst. 32, 2355–2362 (2009)CrossRefGoogle Scholar
  6. 6.
    Groethe, M., Merilo, E., Colton, J., Chiba, S., Sato, Y., Iwabuchi, H.: Int. J. Hydrogen Energy 32(13), 2125–2133 (2007)CrossRefGoogle Scholar
  7. 7.
    Durox, D., Ducruix, S., Baillot, F.: Proc. Combust. Inst. 27, 883–889 (1998)Google Scholar
  8. 8.
    Kerampran, S., Desbordes, D., Veyssiere, B.: Combust. Sc. and Tech. 158(1), 71–91 (2000)CrossRefGoogle Scholar
  9. 9.
    Golub, V.V., Ivanov, M.F., Volodin, V.V., Blagodatskikh, D.V., Golovastov, S.V.: High Temp. 47(2), 296–298 (2009)CrossRefGoogle Scholar
  10. 10.
    Furukawa, J., Hirano, T., Williams, F.A.: Combust. Flame 113, 487–491 (1998)CrossRefGoogle Scholar
  11. 11.
    Liberman, M.A., Ivanov, M.F., Kiverin, A.D., et al.: Deflagration-to-detonation transition in highly reactive combustible mixtures. Acta Astronautica 67(7-8), 688–701 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • V. V. Golub
    • 1
  • D. I. Baklanov
    • 1
  • S. V. Golovastov
    • 1
  • K. V. Ivanov
    • 1
  • M. F. Ivanov
    • 1
  • A. D. Kiverin
    • 1
  • V. V. Volodin
    • 1
  1. 1.Joint Institute for High Temperatures of RASMoscowRussia

Personalised recommendations