Effect of Gas Injection on Transition in Hypervelocity Boundary Layers

  • J. S. Jewell
  • I. A. Leyva
  • N. J. Parziale
  • J. E. Shepherd

Introduction

A novel method to delay transition in hypervelocity flows in air over slender bodies by injecting CO2 into the boundary layer is presented. The dominant transition mechanism in hypersonic flow is the inviscid second (Mack) mode, which is associated with acoustic disturbanceswhich are trapped and amplified inside the boundary layer [8]. In dissociated CO2-rich flows, nonequilibrium molecular vibration damps the acoustic instability, and for the high-temperature, high-pressure conditions associated with hypervelocity flows, the effect is most pronounced in the frequency bands amplified by the second mode [3].

Keywords

Sound Absorption Boundary Layer Transition Stanton Number Shock Tunnel Transition Delay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adam, P.H.: Enthlapy Effects on Hypervelocity Boundary Layers. PhD Thesis, California Institute of Technology, Pasadena, CA 91125 (1997)Google Scholar
  2. 2.
    Clark, J.P., Jones, T.V., LaGraff, J.E.: On the Propagation of Naturally-Occurring Turbulent Spots. Journal of Engineering Mechanics 28(1), 1–19 (1994)CrossRefGoogle Scholar
  3. 3.
    Fujii, K., Hornung, H.G.: Experimental investigation of high-enthalpy effects on attachment-line boundary layer transition. AIAA Journal 41(7) (2003)Google Scholar
  4. 4.
    Hornung, H.G., Belanger, J.: Role and techniques of ground testing simulation of flows up to orbital speeds. AIAA 90-1377 (1990)Google Scholar
  5. 5.
    Hornung, H.G.: Performance data of the new free-piston shock tunnel at GALCIT. AIAA 92-3943 (1992)Google Scholar
  6. 6.
    Johnson, H.B., Seipp, T.G., Candler, G.V.: Numerical study of hypersonic reacting boundary layer transition on cones. Physics of Fluids 10(10), 2676–2685 (1998)CrossRefGoogle Scholar
  7. 7.
    Leyva, I.A., Jewell, J.S., Laurence, S., Hornung, H.G., Shepherd, J.E.: On the impact of injection schemes on transition in hypersonic boundary layers. AIAA 2009-7204 (2009)Google Scholar
  8. 8.
    Mack, L.M.: Boundary-layer stability theory. Special Course on Stability and Transition of Laminar Flow. AGARD Report 709 (1984)Google Scholar
  9. 9.
    Mee, D.J., Goyne, C.P.: Turbulent spots in boundary layers in a free-piston shock-tunnel flow. Shock Waves 6(6), 337–343 (1996)CrossRefGoogle Scholar
  10. 10.
    Narasimha, R.: The Laminar-Turbulent Transition Zone in the Boundary Layer. Progress in Aerospace Sciences 22, 29–80 (1985)CrossRefGoogle Scholar
  11. 11.
    Sanderson, S.: Shock Wave Interaction in Hypervelocity Flow. GALCIT, California Institute of Technology, Ph.D. thesis (1995)Google Scholar
  12. 12.
    Vincenti, W.G., Kruger, C.H.: Introduction to Physical Gas Dynamics. Krieger (1965)Google Scholar
  13. 13.
    Wagnild, R.M., Candler, G.V., Leyva, I.A., Jewell, J.S., Hornung, H.G.: Carbon Dioxide Injection for Hypervelocity Boundary Layer Stability. AIAA 2010-1244 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • J. S. Jewell
    • 1
  • I. A. Leyva
    • 2
  • N. J. Parziale
    • 1
  • J. E. Shepherd
    • 1
  1. 1.California Institute of TechnologyPasadenaUSA
  2. 2.Air Force Research LaboratoryEdwards AFBUSA

Personalised recommendations