Simulations of Reflected Shock Bifurcation in a Square Channel

  • A. Khokhlov
  • J. M. Austin
  • C. Bacon
  • B. Clifford
  • A. Knisely
  • S. Aithal
Conference paper

Introduction

Reflected shock interaction with an incoming boundary layer produces a complex, unsteady, three-dimensional flow field. Shock bifurcation, formation of recirculation bubbles, and turbulent jets are all observed and have been extensively studied experimentally ([1, 2, 3, 4, 5, 6]). The details of the reflection are known to depend on the inflow conditions, including the boundary layer behind the incident shock, and the wall boundary conditions. Reflected shock tube experiments have been conducted in shock tubes with both circular and rectangular cross-sections. There is experimental and numerical evidence that the bifurcated structure is substantially more complex near the corners of a rectangular tube as compared to the bifurcated structure on the centerline of a rectangular tube or in a round tube ([7, 8]). In this study, we present and analyze results of three-dimensional Navier-Stokes direct numerical simulations (DNS) of shock reflection in a square channel for three different incident shockMach numbers. Key features of the present simulations are very high resolution inside the boundary layer and temperature-dependent material and transport properties. We compare and contrast our results as a function of the incident shock Mach number with the existing theoretical model of Mark [1]. The simulations reveal additional flow features in the recirculation and corner regions that are not captured by the model.

Keywords

Direct Numerical Simulation Shock Tube Incident Shock Oblique Shock Schlieren Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mark, H.: NACA TM 1418 (1958)Google Scholar
  2. 2.
    Strehlow, R., Cohen, A.: J. Chem. Phys. 30, 257–265 (1959)CrossRefGoogle Scholar
  3. 3.
    Byron, S.R., Rott, N.: Proc. Heat Trans. & Fluid Mechs. Inst., vol. 38 (1961)Google Scholar
  4. 4.
    Matsuo, K., Shigetoshi, K., Kazuyuki, K.: Bull. JSME 17(110), 1039–1046 (1974)CrossRefGoogle Scholar
  5. 5.
    Fokeev, V., Gvozdeva, L.: 17th Int. Symp. Shock Waves & Shock Tubes (1990)Google Scholar
  6. 6.
    Petersen, E.L., Hanson, R.K.: Shock Waves 15, 333–340 (2006)CrossRefGoogle Scholar
  7. 7.
    Brossard, J., Charpentier, N., Bazhenova, T.V., Fokeev, V.P., Kalachev, A.A., Kharitonov, A.I.: 15th Int. Symp. Shock Waves & Shock Tubes, vol. 163 (1984)Google Scholar
  8. 8.
    Gamezo, V.N., Oran, E.S., Khokhlov, A.M.: Proc. Combust. Inst., pp. 1841–1847 (2005)Google Scholar
  9. 9.
    Khokhlov, A.M.: J. Comp. Phys. 143, 519 (1998)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Khokhlov, A.M., Chtchelkanova, A.Y.: 9th SIAM Conf. Parallel Proc. Scientific Computing (1999)Google Scholar
  11. 11.
    Khokhlov, A., Bacon, C., Austin, J.M., Aithal, S., Riley, K.: 31st Ann. Combust. Res. Meeting, Varrenton, VA (2010)Google Scholar
  12. 12.
    Weber, Y.S., Oran, E.S., Boris, J.P., Anderson, J.D.: Phys. Fluids 7, 2475–2488 (1995)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. Khokhlov
    • 1
  • J. M. Austin
    • 2
  • C. Bacon
    • 3
  • B. Clifford
    • 1
  • A. Knisely
    • 2
  • S. Aithal
    • 3
  1. 1.The University of ChicagoChicagoUSA
  2. 2.University of IllinoisUrbanaUSA
  3. 3.Argonne National LaboratoryChicagoUSA

Personalised recommendations