Computations of Flow Field around an Object Decelerating from Supersonic to Subsonic Velocity

  • T. Saito
  • K. Hatanaka
  • H. Yamashita
  • T. Ogawa
  • S. Obayashi
  • K. Takayama
Conference paper

Introduction

A detached shock wave is formed in front of a blunt object moving with supersonic velocities or an object placed in a supersonic flow. The distance fromthe shock front to the surface of the moving body is called the shock stand-off distance, δ , and is measured along the propagation axis when the object is a solid sphere.

Keywords

Shock Wave Mach Number Shock Front Solid Sphere Shock Tunnel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nonaka, S., Mizuno, H., Takayama, K., Park, C.: J. Thermophys. Heat Trans. 14 (2000)Google Scholar
  2. 2.
    Hashimoto, T., Komuro, T., Sato, K., Itoh, K.: Experimental investigation of shock stand-off distance on spheres in hypersonic nozzle flows. In: Proc. 27th International Symposium on Shock Waves, pp. 961–966 (2007)Google Scholar
  3. 3.
    Itoh, K., Komuro, T., Tanno, H., Sato, K., Takahashi, M., Kodera, M., Hashimoto, M.: Flow characterization of high enthalpy shock tunnel based on shock stand-off distance. In: Proc. Japanese Symposium on Shock Waves, Nagoya, Japan, pp. 347–350 (2009) (in Japanese)Google Scholar
  4. 4.
    Starr, R.F., Bailey, A.B., Varner, M.O.: AIAA Journal 14, 537–539 (1976); Proc. 26th International Symposium on Shock Waves, Gttingen, Germany, July 15–20, vol. 2, pp. 1461–1466 (2007)Google Scholar
  5. 5.
    Toro, E.F.: Phil. Trans. Roy. Soc. London, A341, 499–530 (1992)Google Scholar
  6. 6.
    Toro, E.F.: Riemann solvers and numerical methods for fluid dynamics. Springer, Heidelberg (1997)MATHGoogle Scholar
  7. 7.
    Strang, G.: SIAM J. Numer. Anal. 5(3), 516–517 (1968)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Anderson, D.A., Tannenhill, J.C., Pletcher, R.H.: Computational fluid mechanics and heat transfer. Hemisphere Publishing Corporation, New York (1984)MATHGoogle Scholar
  9. 9.
    Igra, D., Falcovitz, J.: Shock Wave 20, 441–444 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • T. Saito
    • 1
  • K. Hatanaka
    • 1
  • H. Yamashita
    • 2
  • T. Ogawa
    • 2
  • S. Obayashi
    • 2
  • K. Takayama
    • 2
  1. 1.Dept. of Aerospace Eng.Muroran Institute of TechnologyMuroranJapan
  2. 2.Institute of Fluid ScienceTohoku UniversityAoba-kuJapan

Personalised recommendations