Secondary Atomization on Two-Phase Shock Wave Structure

  • E. Del Prete
  • J. -F. Haas
  • A. Chauvin
  • G. Jourdan
  • L. Houas
  • A. Chinnayya
  • A. Hadjadj
Conference paper

Introduction

The use of sprays in liquid and gas flows covers a wide range of applications [1]. The efficiency of such multiphase systems to mitigate the devastating effects of blast waves which are issued from explosion is well known [2]. Indeed during shock loading, the water mist is subjected to aerodynamic forces from the carrier phase, which leads to a secondary atomization [3] of its individual liquid components. This induces a drastic increase of interfacial surface as well as interphase exchanges. Two-phase shock wave is known to show a long-time self-similarity behavior. The aim of this work is to investigate the transient pressure build-up due to secondary atomization and to confront the results from shock tube experiments with numerical modeling.

Keywords

Shock Wave Mach Number Shock Tube Blast Wave Rarefaction Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gelfand, B.E.: Prog. Energy Comb. 22, 3 (1996)Google Scholar
  2. 2.
    Jourdan, G., Biamino, L., Mariani, C., Blanchot, C., Daniel, E., Massoni, J., Houas, L., Tosello, R., Praguine, D.: Shock Waves 20, 4 (2010)CrossRefGoogle Scholar
  3. 3.
    Guildenbecher, D.R., Lopez-Rivera, C., Sojka, P.E.: Experiments in Fluids 46 (2009)Google Scholar
  4. 4.
    Pilch, M., Erdman, C.A.: International Journal of Multiphase Flow 13, 6 (1987)CrossRefGoogle Scholar
  5. 5.
    Hsiang, L.P., Faeth, G.M.: International Journal of Multiphase Flow 18, 5 (1992)CrossRefGoogle Scholar
  6. 6.
    Chinnayya, A., Daniel, E., Saurel, R.: Journal of Computational Physics 196 (2004)Google Scholar
  7. 7.
    Saurel, R., Le Métayer, O.: Journal of Fluid Mechanics 431 (2001)Google Scholar
  8. 8.
    Kolev, N.I.: Thermal and Mechanical Interactions, 3rd edn. Springer (2007)Google Scholar
  9. 9.
    Jourdan, G., Houas, L., Schwaederle, L., Layes, G., Carrey, R., Diaz, F.: Shock Waves 13 (2004)Google Scholar
  10. 10.
    Del Prete, E., Domergue, L., Haas, J.-F., Chinnayya, A., Hadjadj, A.: Numerical Modeling and Experimental Investigation of Blast Wave Attenuation by Dry Aqueous Foams. Submitted to ISSW28Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • E. Del Prete
    • 1
  • J. -F. Haas
    • 1
  • A. Chauvin
    • 2
  • G. Jourdan
    • 2
  • L. Houas
    • 2
  • A. Chinnayya
    • 3
  • A. Hadjadj
    • 3
  1. 1.CEA, DAM, DIFArpajonFrance
  2. 2.IUSTI-CNRSAix-Marseille UniversiteMarseilleFrance
  3. 3.CORIA UMR CNRS 6614Saint-Etienne du RouvrayFrance

Personalised recommendations