The Behaviors of a Drop in Ambient Liquid under a Sudden Impact

  • H. Ling
  • Y. Zhu
  • R. Xiong
  • L. Wang
  • F. Xiao
  • M. Xu
  • J. Yang
Conference paper

Introduction

The deformation and breakup of a liquid drop in ambient liquid phase is a common phenomenon in a variety of scientific and engineering applications, such as oil pipeline transport, metallurgy, and certain types of emulsions when they encounter severe disturbances. Therefore it is of great importance to understand the behaviors and mechanisms of the drop under such circumstances.

Keywords

Interfacial Tension Weber Number Breakup Process Drop Tower Ohnesorge Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Theofanous, T.G., Li, G.J., Dinh, T.N.: Aerobreakup in Rarefied Supersonic Gas Flows. Journal of Fluids Engineering 126(4), 516 (2004)CrossRefGoogle Scholar
  2. 2.
    Zhao, H., et al.: Morphological classification of low viscosity drop bag breakup in a continuous air jet stream. Physics of Fluids 22(11), 103–114 (2010)CrossRefGoogle Scholar
  3. 3.
    Han, J., Tryggvason, G.: Secondary breakup of axisymmetric liquid drops. I. Acceleration by a constant body force. Physics of Fluids 11(12), 3650–3667 (1999)MATHCrossRefGoogle Scholar
  4. 4.
    Han, J., Tryggvason, G.: Secondary breakup of axisymmetric liquid drops. II. Impulsive acceleration. Physics of Fluids 13(6), 1554–1565 (2001)CrossRefGoogle Scholar
  5. 5.
    Igra, D., Ogawa, T., Takayama, K.: A parametric study of water column deformation resulting from shock wave loading. Atomization and Sprays 12(5-6), 577–591 (2002)CrossRefGoogle Scholar
  6. 6.
    Duan, R.Q.A., Koshizuka, S., Oka, Y.: Numerical and theoretical investigation of effect of density ratio on the critical Weber number of droplet breakup. Journal of Nuclear Science and Technology 40(7), 501–508 (2003)CrossRefGoogle Scholar
  7. 7.
    Gelfand, B.E.: Droplet breakup phenomena in flows with velocity lag. Progress in Energy and Combustion Science 22(3), 201–265 (1996)CrossRefGoogle Scholar
  8. 8.
    Guildenbecher, D.R., Lopez-Rivera, C., Sojka, P.E.: Secondary atomization. Experiments in Fluids 46(3), 371–402 (2009)CrossRefGoogle Scholar
  9. 9.
    Aalburg, C., van Leer, B., Faeth, G.M.: Deformation and drag properties of round drops subjected to shock-wave disturbances. AIAA Journal 41(12), 2371–2378 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • H. Ling
    • 1
  • Y. Zhu
    • 1
  • R. Xiong
    • 1
  • L. Wang
    • 1
  • F. Xiao
    • 1
  • M. Xu
    • 1
  • J. Yang
    • 1
  1. 1.University of Science and Technology of ChinaHefeiP.R. China

Personalised recommendations