Head on Collisions of Compressible Vortex Loops on a Solid Wall Effects of Wall Distance Variation

  • R. Mariani
  • K. Kontis
Conference paper

Introduction

Since the dawn of time, human kind have felt the presence of shock waves in nature through thunders and vulcano eruptions and, unable to understand them, have associated their often destructive might to divinities such as Zeus and Jupiter in the Greek and Roman mythology, the Norse divinity of Thor, and the elusive Thunderbird in the Native North American culture. Through history, albeit unknowingly, humans have been able to generate shock waves via the cracking of a whip or the explosion of fireworks. It was the invention of the atomic bomb that brought back fear and respect towards the might of this natural phenomena [1]. For research purposes, shock waves can be easily generated in a laboratory environment using shock-tubes where a high-to-low pressure discontinuity is initially present.

Keywords

Shock Wave Mach Number Vortex Ring Shock Tube Nozzle Exit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Glass, I.I.: Shock Waves and Man, pp. 1–7. The Toronoto University Press (1974)Google Scholar
  2. 2.
    Gaydon, A.G., Hurle, I.R.: The Shock Tube in High-Temperature Chemical Physics, pp. 1–107. Chapman and Hall (1963)Google Scholar
  3. 3.
    Kontis, K., An, R., Zare-Behtash, H., Koundais, D.: Physics of Fluids 20 (2008)Google Scholar
  4. 4.
    Broadbent, E.G., Moore, D.W.: Proc. Royal Soc. London Series A Mathematical and Physical Sciences 709 (1987)Google Scholar
  5. 5.
    Ladenburg, R., Van Voorhis, C.C., Winckler, J.: Physical Review 76 (1949)Google Scholar
  6. 6.
    Vick, A., Andrews Jr., E.H., Winckler, J.: NASA Technical Note D-3269 (1966)Google Scholar
  7. 7.
    Lamont, P.J., Hunt, B.L.: J. Fluid Mech. 100, 3 (1979)Google Scholar
  8. 8.
    Henderson, B.: J. Acoust. Soc. Am. 111, 2 (2001)Google Scholar
  9. 9.
    Henderson, B., Bridges, J., Wernet, M.: J. Fluid Mech. 542 (2005)Google Scholar
  10. 10.
    Kontis, K., An, R., Edwards, J.A.: AIAA Journal 44, 12 (2006)CrossRefGoogle Scholar
  11. 11.
    Mariani, R., Kontis, K.: 47th AIAA Aerospace Science Meeting, Orlando AIAA2009-410, January 5-8 (2009)Google Scholar
  12. 12.
    Liang, S.-M., Ching, W.-T., Chen, H.: AIAA Journal 43, 2 (2005)CrossRefGoogle Scholar
  13. 13.
    Tokugawa, N., Ishii, Y., Sugano, K., Takayama, F., Kambe, T.: Fluid Dynamics Research 21 (1997)Google Scholar
  14. 14.
    Minota, T., Nishida, M., Lee, M.G.: Fluid Dynamics Research 21 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • R. Mariani
    • 1
  • K. Kontis
    • 1
  1. 1.The School of MACEThe University of ManchesterManchesterUK

Personalised recommendations