Shock Dynamics for Cylindrical/Spherical Converging Shocks in Elastic-Plastic Solids

  • A. López Ortega
  • M. Lombardini
  • D. J. Hill
  • D. I. Pullin
  • D. I. Meiron
Conference paper

Introduction

The study of cylindrical and spherical converging shock waves propagating in solid materials is relevant to the production of high temperatures and pressures in condensed matter with applications to inertial confinement fusion [1]. However, experimental studies conducted in the area are prone to complications derived from the measurement techniques available and the difficulty of producing a quasi-radially symmetric flow.

Keywords

Mach Number Plastic Region Elastic Precursor Eulerian Description Converge Shock Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lindl, J.D.: Inertial confinement fusion: The quest for ignition and energy gain using indirect drive. Springer (1998)Google Scholar
  2. 2.
    Guderley, G.: Starke Kugelige und zylindrische Verdichtungsstösse in der Nähe des Kugelmittelpunktes bzw der Zylinderachse. Luftfahrtforschung 19, 302–312 (1942)MathSciNetGoogle Scholar
  3. 3.
    Whitham, G.B.: Linear and Nonlinear Waves. John Wiley and Sons (1974)Google Scholar
  4. 4.
    Hornung, H.G., Pullin, D.I., Ponchaut, N.: On the question of universality of imploding shock waves. Acta Mechanica 201(1), 31–35 (2008)MATHCrossRefGoogle Scholar
  5. 5.
    Whitham, G.B.: A new approach to problems of shock dynamics Part I Two-dimensional problems. Journal of Fluid Mechanics 2, 145–171 (1957)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Yadav, H.S., Singh, V.P.: Converging shock waves in metals. Pramana 18(4), 331–338 (1982)CrossRefGoogle Scholar
  7. 7.
    Hiroe, T., Matsu, H., Fujiwara, K.: Numerical simulation of cylindrical converging shocks in solids. Journal of Applied Physics 72(7), 2605–2611 (1992)CrossRefGoogle Scholar
  8. 8.
    Blatz, P.J., Ko, W.L.: Application of finite elastic theory to the deformation of rubbery materials. Trans. Soc. Rheology 6(1), 223–252 (1962)CrossRefGoogle Scholar
  9. 9.
    Miller, G.H., Colella, P.: A High-Order Eulerian Godunov Method for Elastic–Plastic Flow in Solids. Journal of Computational Physics 167, 131–176 (2001)MATHCrossRefGoogle Scholar
  10. 10.
    Cleja-Tigoiu, S., Maugin, G.: Eshelby’s stress tensors in finite elastoplasticity. Acta Mechanica 139(1), 231–249 (2000)MATHCrossRefGoogle Scholar
  11. 11.
    López Ortega, A., Hill, D.J., Pullin, D.I., Meiron, D.I.: Linearized Richtmyer–Meshkov flow analysis for impulsively accelerated incompressible solids. Phys. Rev. E 81(6), 066305 (2010)Google Scholar
  12. 12.
    Lombardini, M., Pullin, D.I.: Small-amplitude perturbations in the three-dimensional cylindrical Richtmyer–Meshkov instability. Physics of Fluids 21(11), 114103 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. López Ortega
    • 1
  • M. Lombardini
    • 1
  • D. J. Hill
    • 1
  • D. I. Pullin
    • 1
  • D. I. Meiron
    • 1
  1. 1.Graduate Aerospace LaboratoriesCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations