On Partial Comparability and Fuzzy Preference-Aversion Models

Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 122)


A general overview of partial comparability and preference theory allows examining the notion of bipolarity and its role in the development of some general preference structures. This bipolar approach comes natural to the framework of decision theory, where different preference structures can be initially explored according to the type of bipolar model that they follow. Therefore, we compare two general preference structures, the first one, referred to as the PCT structure, which results from a well known axiomatic model for partial comparability theory, and the second one, referred to as the P-A structure, which extends one particular standard fuzzy preference model, such that some basic differences as well as particular similarities are clearly identified.


Preference-aversion fuzzy preference structures partial comparability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aumann, R.: Utility theory without the completeness axiom. Econometrica 30, 445–462 (1962)zbMATHCrossRefGoogle Scholar
  2. 2.
    Dubois, D., Prade, H.: An introduction to bipolar representations of information and preference. International Journal of Intelligent Systems 23, 866–877 (2008)zbMATHCrossRefGoogle Scholar
  3. 3.
    Fodor, J., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht (1994)zbMATHGoogle Scholar
  4. 4.
    Franco, C., Montero, J., Rodríguez, J.T.: Aggregation weights for a preference-aversion model. In: Proceedings World Conference on Soft Computing, San Francisco (2010), paper 199 Google Scholar
  5. 5.
    Goguen, J.: The logic of inexact concepts. Synthese 19, 325–373 (1969)zbMATHCrossRefGoogle Scholar
  6. 6.
    Grabisch, M., Labreuche, C.: A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid. A Quarterly Journal of Operations Research 6, 1–44 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Kahneman, D., Tversky, A.: Prospect theory: an analysis of decision under risk. Econometrica 47, 263–291 (1979)zbMATHCrossRefGoogle Scholar
  8. 8.
    Montero, J., Gómez, D., Bustince, H.: On the relevance of some families of fuzzy sets. Fuzzy Sets and Systems 158, 2429–2442 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Montero, J., Tejada, J., Cutello, C.: A general model for deriving preference structures from data. European Journal of Operational Research 98, 98–110 (1997)zbMATHCrossRefGoogle Scholar
  10. 10.
    Perny, P., Roy, B.: The use of fuzzy outranking relations in preference modelling. Fuzzy Sets and Systems 49, 33–53 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Perny, P., Tsoukiàs, A.: On the continuous extension of a four valued logic for preference modeling. In: Proceedings IPMU Conference, Paris, France, July 6-10, pp. 302–309 (1998)Google Scholar
  12. 12.
    Rodríguez, J.T., Franco, C., Montero, J.: On the relationship between bipolarity and fuzziness. In: Proceedings EUROFUSE Conference, Régua, Portugal, September 21-23 (2011)Google Scholar
  13. 13.
    Roy, B.: Partial preference analysis and decision-aid: the fuzzy outranking relation concept. In: Bell, D., Keeney, R., Raiffa, H. (eds.) Conflicting Objectives in Decisions. Wiley and Sons, New York (1977)Google Scholar
  14. 14.
    Savage, L.: The Foundations of Statistics. Dover Publications, New York (1972)zbMATHGoogle Scholar
  15. 15.
    Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North-Holland, Amsterdam (1983)zbMATHGoogle Scholar
  16. 16.
    Smith, A.: The Theory of Moral Sentiments. Cambridge University Press, Cambridge (2002)Google Scholar
  17. 17.
    Trillas, E.: On a model for the meaning of predicates (A naïve approach to the genesis of fuzzy sets). In: Seising, R. (ed.) Views of Fuzzy Sets and Systems from Different Perspectives, pp. 175–205. Springer (2009)Google Scholar
  18. 18.
    Tsoukiás, A., Vincke, P.: A new axiomatic foundation of partial comparability. Theory and Decision 39, 79–114 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Tsoukiàs, A., Vincke, P.: Extended preference structures in MultiCriteria Decision Aid. In: Multicriteria Analysis. Springer, Berlin (1997)Google Scholar
  20. 20.
    Tversky, A., Kahneman, D.: Advances in prospect theory: cumulative representation of uncertainty. Journal of Risk and Uncertainty 5, 297–323 (1992)zbMATHCrossRefGoogle Scholar
  21. 21.
    Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1953)zbMATHGoogle Scholar
  22. 22.
    Zadeh, L.: Fuzzy sets. Information and Control 8, 338–353 (1965)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Faculty of MathematicsUniversity ComplutenseMadridSpain

Personalised recommendations