Modeling and Simulation for Dynamics of Anti-HBV Infection Therapy

  • Xiao Chen
  • Lequan Min
  • Yongan Ye
  • Yu Zheng
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 123)


Based on our previous researches, this paper introduces a new differential equation model to describe the dynamics of traditional Chinese medicines (TCM) + nucleoside analogues (NA) anti-HBV infection treatment for the chronic hepatitis B (CHB) patients. This model has five state variables. A treatment-activated specific term in this model is in charge of directly clearing patients’ HBV rather than damaging patients’ hepatocytes. As an application, we use this model to simulate the dynamics of TCM + NA anti-HBV infection personalized combination treatments. The numerical simulations and analysis show that the TCM + NA combination treatments are able to activate patients’ abilities of cytokine-midiated noncytolytic HBV clearance.


Chronic HBV infection Mathematical modeling Basic virus reproductive number Global stability Numerical simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    WHO, Hepatitis B: Fact Sheet, World Health Organization (October 2000), (accessed August 2011)
  2. 2.
    Maddret, W.C.: Hepatitis B: an important public health issue. J. Med. Virol. 61, 362–366 (2000)CrossRefGoogle Scholar
  3. 3.
    Lau, G.K.K., Piratvisuth, T., Luo, K.X., et al.: Peginterferon Alfa-2a, Lamivudine, and the Combination for HBeAg-Positive Chronic Hepatitis B. New England Journal of Medicine 352, 2682–2695 (2005)CrossRefGoogle Scholar
  4. 4.
    Dienstag, J.L., Schiff, E.R., Wright, T.L., et al.: Lamivudine as initial treatment for chronic hepatitis in the United States. N. Engl. J. Med. 34, 1256–1263 (1999)CrossRefGoogle Scholar
  5. 5.
    Marcellin, P., Chang, T.T., Lim, S.: G., et al.: Long-term efficacy and safetyof adefovir dipivoxil in HBeAg + chronic hepatitis B patients: inceasing serologic, virologic, and biochemecal response over time (abstract). Hepatology. 40(suppl.1), 665A (2004)Google Scholar
  6. 6.
    Papathecodoridis, G.V., Hadziyannis, S.J.: Diagnosis and management of pre-core mutant chronic hepatitis B. J. Viral Hepat. 125, 562–567 (2001)Google Scholar
  7. 7.
    Hadziyannis, S.J., Vassilopoulos, D.: Hepatitis B e antigen-negative chronic hepatitis B. Hepatology 34, 617–624 (2001)CrossRefGoogle Scholar
  8. 8.
    Ye, Y., Min, L., Zhang, Q.: Evaluation of 48 week adefovior dipvoxl (AD) and Chinese hebral medicine plus AD treatment in HBeAg(+) chronic hepatitis B Chinese patients: A double-bind randomized trial(Abstract). In: Hepatology (Supplement: The 62st Annual Meeting of the American Association for the Study of Liver Diseases: The Liver Meeting, 54 (S1) (2011) (in press)Google Scholar
  9. 9.
    Nowak, M.A., May, R.M.: Virus dynamics: Mathematical principles of immunology and virology. Oxford University, Oxford (2000)MATHGoogle Scholar
  10. 10.
    Nowak, M.J., Bonhoeffer, S., Hill, A.M., et al.: Viral dynamics in hepatitis B virus infection. Proc. Natl. Acad. Sci. USA. 93, 4398–4402 (1996)CrossRefGoogle Scholar
  11. 11.
    Leenbeer, P.D., Smith, H.L.: Virus dynamics: A global analysis. SIAM Journal on Applied Mathematics 63, 1313–1327 (2003)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Min, L., Su, Y., Kuang, Y.: Mathematical analysis of a basic model of virus infection with application to HBV infection. Rocky Mountain J. of Mathematics 38, 1573–1585 (2008)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Gourley, S.A., Kuang, Y., Nagy, J.D.: Dynamics of a delay differential model of hepatitis B virus infection. J. Biological Dynamics 2, 140–153 (2008)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Eikenberry, S., Hews, S., Nagy, J.D., Kuang, Y.: The dynamics of a delay model of HBV infection with logistic hepatocyte growth. Math. Biosc. and Eng. 6, 283–299 (2009)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Zheng, Y., Min, L., Ji, Y., Su, Y., Kuang, Y.: Global Stability of Endemic Equilibrium Point of Basic Virus Infection Model with Application to HBV Infection. J. Systems Science and Complexity 23, 1221–1230 (2010)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Feld, J., Lee, J., Locarnini, S.: New targets and possible new therapeutic approaches in the chemotherapy of chronic hepatitis B. Perspectives in Clinical Hepatology 38, 545–553 (2003)Google Scholar
  17. 17.
    Perelson, A.S.: Modelling viral and immune system dynamics. Nature Reviews Immunology 2, 28–36 (2002)CrossRefGoogle Scholar
  18. 18.
    Bataller, R., Brenner, D.A.: Liver fibrosis. J. Clin. Invest. 115, 209–218 (2005)Google Scholar
  19. 19.
    Hellerstein, M., Hanley, M.B., Cesar, D., et al.: Directly measureed kinetics of circulating T lymphocyres in normal and HIV-1-infected humans. Nature Medicine 5, 83–89 (1999)CrossRefGoogle Scholar
  20. 20.
    Stockham, S.L., Scott, M.A.: Fundamentals of Veterinary Clinical Pathology. Iowa State University Press (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Xiao Chen
    • 1
  • Lequan Min
    • 1
    • 2
  • Yongan Ye
    • 3
  • Yu Zheng
    • 1
  1. 1.Automation SchoolUniversity of Science and Technology BeijingBeijingChina
  2. 2.Mathematics and Physics SchoolUniversity of Science and Technology BeijingBeijingChina
  3. 3.Traditional Chinese Internal Medicine Key Laboratory of China Education Ministry, Dongzhimen HospitalBeijing University of Chinese MedicineBeijingChina

Personalised recommendations