Advertisement

Perspectives and Integration in SOLAS Science

  • Véronique C. Garçon
  • Thomas G. Bell
  • Douglas Wallace
  • Steve R. Arnold
  • Alex Baker
  • Dorothee C. E. Bakker
  • Hermann W. Bange
  • Nicholas R. Bates
  • Laurent Bopp
  • Jacqueline Boutin
  • Philip W. Boyd
  • Astrid Bracher
  • John P. Burrows
  • Lucy J. Carpenter
  • Gerrit de Leeuw
  • Katja Fennel
  • Jordi Font
  • Tobias Friedrich
  • Christoph S. Garbe
  • Nicolas Gruber
  • Lyatt Jaeglé
  • Arancha Lana
  • James D. Lee
  • Peter S. Liss
  • Lisa A. Miller
  • Nazli Olgun
  • Are Olsen
  • Benjamin Pfeil
  • Birgit Quack
  • Katie A. Read
  • Nicolas Reul
  • Christian Rödenbeck
  • Shital S. Rohekar
  • Alfonso Saiz-Lopez
  • Eric S. Saltzman
  • Oliver Schneising
  • Ute Schuster
  • Roland Seferian
  • Tobias Steinhoff
  • Pierre-Yves Le Traon
  • Franziska Ziska
Chapter
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)

Abstract

Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm.

Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of ocean–atmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency.

The exchange of energy, gases and particles across the air-sea interface is controlled by a variety of biological, chemical and physical processes that operate across broad spatial and temporal scales. These processes influence the composition, biogeochemical and chemical properties of both the oceanic and atmospheric boundary layers and ultimately shape the Earth system response to climate and environmental change, as detailed in the previous four chapters. In this cross-cutting chapter we present some of the SOLAS achievements over the last decade in terms of integration, upscaling observational information from process-oriented studies and expeditionary research with key tools such as remote sensing and modelling.

Here we do not pretend to encompass the entire legacy of SOLAS efforts but rather offer a selective view of some of the major integrative SOLAS studies that combined available pieces of the immense jigsaw puzzle. These include, for instance, COST efforts to build up global climatologies of SOLAS relevant parameters such as dimethyl sulphide, interconnection between volcanic ash and ecosystem response in the eastern subarctic North Pacific, optimal strategy to derive basin-scale CO2 uptake with good precision, or significant reduction of the uncertainties in sea-salt aerosol source functions. Predicting the future trajectory of Earth’s climate and habitability is the main task ahead. Some possible routes for the SOLAS scientific community to reach this overarching goal conclude the chapter.

Keywords

Particulate Organic Carbon Advanced Very High Resolution Radiometer Advanced Very High Resolution Radiometer Particulate Inorganic Carbon Peroxy Acetyl Nitrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adornato L, Cardenas-Valencia A, Kaltenbacher E, Byrne RH, Daly K, Larkin K, Hartman S, Mowlem M, Prien RD, Garçon VC (2010) In situ nutrient sensors for ocean observing systems. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of the OceanObs’09: sustained ocean observations and information for society conference, vol 2. ESA Publication, Venice, 21–25 Sept 2009, WPP-306Google Scholar
  2. Alvain S, Moulin C, Danndonneau Y, Breon FM (2005) Remote sensing of phytoplankton groups on case 1 waters from global SeaWiFS imagery. Deep-Sea Res I 52:1989–2004Google Scholar
  3. Alvain S, Moulin C, Danndonneau Y, Loisel H (2008) Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: a satellite view. Glob Biogeochem Cycles 22, GB3001Google Scholar
  4. Anderson TR (2005) Plankton functional type modelling: running before we can walk? J Plankton Res 27. doi: 10.1093/plankt/fbi076Google Scholar
  5. Anderson TR, Spall SA, Yool A, Cipollini P, Challenor PG, Fasham MJR (2001) Global fields of sea surface dimethylsulfide predicted from chlorophyll, nutrients and light. J Mar Syst 30(1–2):1–20. doi: 10.1016/S0924-7963(01)00028-8CrossRefGoogle Scholar
  6. Andreae TW, Andreae MO, Ichoku C, Maenhaut W, Cafmeyer J, Karnieli A, Orlovsky L (2002) Light scattering by dust and anthropogenic aerosol at a remote site in the Negev desert, Israel. J Geophys Res 107(D2):4008. doi: 10.1029/2001JD900252CrossRefGoogle Scholar
  7. Anguelova MD, Webster F (2006) Whitecap coverage from satellite measurements: a first step toward modeling the variability of oceanic whitecaps. J Geophys Res 111:C03017. doi: 10.1029/2005JC003158CrossRefGoogle Scholar
  8. Arnold SR, Spracklen DV, Williams J, Yassaa N, Sciare J, Bonsang B, Gros V, Peeken I, Lewis AC, Alvain S, Moulin C (2009) Evaluation of the global oceanic isoprene source and its impacts on marine organic carbon aerosol. Atmos Chem Phys 9(4):1253–1262. http://www.atmos-chem-phys.net/9/1253/2009/acp-9-1253-2009.htmlGoogle Scholar
  9. Arnold SR, Spracklen DV, Gebhardt S, Custer T, Williams J, Peeken I, Alvain S (2010) Relationships between atmospheric organic compounds and air-mass exposure to marine biology. Environ Chem 7(3):232–241. doi: 10.1071/EN09144CrossRefGoogle Scholar
  10. Ayers GP, Gras JL (1991) Seasonal relationship between cloud condensation nuclei and aerosol methanesulphonate in marine air. Nature 353:334–835Google Scholar
  11. Ayers GP, Penkett SA, Gillett R, Bandy B, Galbally IE, Meyer CP, Elsworth CM, Bentley ST, Forgan BW (1992) Evidence for photochemical control of ozone concentrations in unpolluted marine air. Nature 360:446–449. doi: 10.1038/360446a0CrossRefGoogle Scholar
  12. Ayers GP, Cainey JM, Gillett RW, Ivey JP (1997) Atmospheric sulphur and cloud condensation nuclei in marine air in the southern hemisphere. Phil Trans R Soc Lond B 352:203–211Google Scholar
  13. Bahurel P, MERCATOR Project Team (2006) Chapter 14: MERCATOR ocean global to regional ocean monitoring and forecasting. In: Chassignet EP, Verron J (eds) Ocean weather forecasting. Springer, New York, pp 381–395Google Scholar
  14. Baker DF, Bousquet P, Bruhwiler L, Chen YH, Ciais P, Denning AS, Fung IY, Gurney KR, Heimann M, John J, Law RM, Maki T, Maksyutov S, Masarie K, Pak BC, Peylin P, Prather M, Rayner PJ, Taguchi S, Zhu ZX (2006) TransCom 3 inversion intercomparison: impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988–2003. Glob Biogeochem Cycles 20:GB1002. doi: 10.1029/2004GB002439CrossRefGoogle Scholar
  15. Baker AR, Lesworth T, Adams C, Jickells TD, Ganzeveld L (2010) Estimation of atmospheric nutrient inputs to the Atlantic Ocean from 50°N to 50°S based on large-scale field sampling: fixed nitrogen and dry deposition of phosphorus. Glob Biogeochem Cycles 24:GB3006. doi: 10.1029/2009GB003634CrossRefGoogle Scholar
  16. Balch WM, Kilpatrick K, Holligan PM, Harbour D, Fernandez E (1996) The 1991 coccolithophore bloom in the central north Atlantic. II. Relating optics to coccolith concentration. Limnol Oceanogr 41:1684–1696Google Scholar
  17. Balch WM, Gordon HR, Bowler BC, Drapeau DT, Booth ES (2005) Calcium carbonate measurements in the surface global ocean based on moderate-resolution imaging spectroradiometer data. J Geophys Res 110:C07001. doi: 10.1029/2004JC002560CrossRefGoogle Scholar
  18. Balch WM, Drapeau DT, Bowler BC, Lyczskowski E, Booth ES, Alley D (2011) The contribution of coccolithophores to the optical and inorganic carbon budgets during the Southern Ocean Gas Exchange Experiment: new evidence in support of the “Great Calcite Belt” hypothesis. J Geophys Res 116:C00F06. doi: 10.1029/2011JC006941CrossRefGoogle Scholar
  19. Bange HW, Bell TG, Cornejo M, Freing A, Uher G, Upstill-Goddard RC, Zhang G (2009) MEMENTO: a proposal to develop a database of marine nitrous oxide and methane measurements. Environ Chem 6:195–197. doi: 10.1071/EN09033CrossRefGoogle Scholar
  20. Bates NR (2001) Interannual variability of oceanic CO2 and biogeochemical properties in the Western North Atlantic subtropical gyre. Deep-Sea Res II 48:1507–1528. doi: 10.1016/S0967-0645(00)00151-XCrossRefGoogle Scholar
  21. Bates NR (2007) Interannual variability of the oceanic CO2 sink in the subtropical gyre of the North Atlantic Ocean over the last two decades. J Geophys Res 112(C9):C09013. doi: 10.1029/2006JC003759CrossRefGoogle Scholar
  22. Bates NR, Michaels AF, Knap AH (1996) Seasonal and inter-annual variability of the oceanic carbon dioxide system at the U.S JGOFS Bermuda Atlantic Time series site. Deep-Sea Res II 43(2–3):347–383. doi: 10.1016/0967-0645(95)00093-3CrossRefGoogle Scholar
  23. Bates NR, Knap AH, Michaels AF (1998) Contribution of hurricanes to local and global estimates of air-sea exchange of CO2. Nature 395:58–61. doi: 10.1038/25703CrossRefGoogle Scholar
  24. Beale R, Dixon JL, Arnold SR, Liss PS, Nightingale PD (2013) Methanol, acetaldehyde and acetone in the surface waters of the Atlantic Ocean, (accepted)Google Scholar
  25. Beirle S, Platt U, von Glasow R, Wenig M, Wagner T (2004) Estimate of nitrogen oxide emissions from shipping by satellite remote sensing. Geophys Res Lett 31:L18102. doi: 10.1029/2004GL020312CrossRefGoogle Scholar
  26. Bell TG, Malin G, Lee GA, Stefels J, Archer S, Steinke M, Matrai P (2011) Global oceanic DMS data inter-comparability. Biogeochemistry. doi: 10.1007/s10533-011-9662-3CrossRefGoogle Scholar
  27. Belviso S, Moulin C, Bopp L, Stefels J (2004a) Assessment of a global climatology of oceanic dimethylsulfide (DMS) concentrations based on SeaWiFS imagery (1998–2001). Can J Fish Aquat Sci 61:804–816. doi: 10.1139/F04-001CrossRefGoogle Scholar
  28. Belviso S, Bopp L, Moulin C, Orr JC, Anderson TR, Aumont O, Chu S, Elliott S, Maltrud ME, Simó R (2004b) Comparison of global climatological maps of sea surface dimethyl sulphide. Glob Biogeochem Cycles 18:GB3013. doi: 10.1029/2003GB002193CrossRefGoogle Scholar
  29. Bolin B, Keeling CD (1963) Large-scale atmospheric mixing as deduced from the seasonal and meridional variations of carbon dioxide. J Geophys Res 68:3899–3920Google Scholar
  30. Bonsang B, Gros V, Peeken I, Yassaa N, Bluhm K, Zöllner E, Sarda-Esteve R, Williams J (2010) Isoprene emission from phytoplankton monocultures: the relationship with chlorophyll-a, cell volume and carbon content. Environ Chem 7(6):554–563. doi: 10.1071/EN09156CrossRefGoogle Scholar
  31. Bopp L, Aumont O, Belviso S, Monfray P (2003) Potential impact of climate change on marine dimethyl sulfide emissions. Tellus B 55(1):11–22Google Scholar
  32. Bopp L, Aumont O, Belviso S, Blain S (2008) Modeling the effect of iron fertilization on dimethylsulfide emissions in the Southern Ocean. Deep Sea Res II 55(5–7):901–912Google Scholar
  33. Bourassa, M, Stoffelen A, Bonekamp H, Chang P, Chelton D, Courtney J, Edson R, Figa J, He Y, Hersbach H, Hilburn K, Jelenak Z, Kelly K, Knabb R, Lee T, Lindstrom E, Liu W, Long D, Perrie W, Portabella M, Powell M, Rodriguez E, Smith D, Swail V, Wentz F (2010) Remotely sensed winds and wind stresses for marine forecasting and ocean modeling. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 2. Venice, 21–25 Sept 2009Google Scholar
  34. Bousquet P, Peylin P, Ciais P, Le Quéré C, Friedlingstein P, Tans P (2000) Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science 290:1342–1346Google Scholar
  35. Boutin J, Martin N, Reverdin G, Yin X, Gaillard F (2012) Sea surface freshening inferred from SMOS and ARGO salinity: impact of rain. Ocean Sci Discuss 9:3331–3357. doi: 10.5194/osd-9-3331-2012CrossRefGoogle Scholar
  36. Bovensmann H, Burrows JP, Buchwitz M, Frerick J, Noël S, Rozanov VV, Chance KV, Goede APH (1999) SCIAMACHY- mission objectives and measurement modes, conference on global measurement systems for atmospheric composition, May 1997, Toronto. J Atmos Sci 56(2):127–150Google Scholar
  37. Bowyer PA (1984) Aerosol production in the whitecap simulation tank as a function of water temperature (Appendix E). In: Monahan ED, Spillane MC, Bowyer PA, Higgins MR, Stabeno PJ (eds) Whitecap and the marine atmosphere, vol 7, Report. University College, Galway, pp 95–103Google Scholar
  38. Bowyer PA, Woolf DK, Monahan EC (1990) Temperature dependence of the charge and aerosol production associated with a breaking wave in a whitecap simulations tank. J Geophys Res 95:5313–5319Google Scholar
  39. Boyd P (2008) Implications of large-scale iron fertilization of the oceans. Mar Ecol Prog Ser 364:213–218. doi: 10.3354/meps07541CrossRefGoogle Scholar
  40. Boyd P, Harrison PJ (1999) Phytoplankton dynamics in the NE subarctic Pacific. Deep-Sea Res II 46:2405–2432Google Scholar
  41. Boyd PW, Muggli DL, Varela DE, Goldblatt RH, Chretien R, Orians KJ, Harrison PJ (1996) In vitro iron enrichment experiments in the NE subarctic Pacific. Mar Ecol Prog Ser 136:179–193Google Scholar
  42. Boyd PW, Jickells T, Law CS, Blain S, Boyle EA, Buesseler KO, Coale KH, Cullen JJ, de Baar HJW, Follows M, Harvey M, Lancelot C, Levasseur M, Owens NPJ, Pollard R, Rivkin RB, Sarmiento J, Schoemann V, Smetacek V, Takeda S, Tsuda A, Turner S, Watson AJ (2007) Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315(5812):612–617Google Scholar
  43. Bracher A, Vountas M, Dinter T, Burrows JP, Röttgers R, Peeken I (2009) Quantitative observation of cyanobacteria and diatoms from space using PhytoDOAS on SCIAMACHY data. Biogeosciences 6:751–764Google Scholar
  44. Brasseur P, Gruber N, Barciela R, Brander K, Doron M, El Moussaoui A, Hobday AJ, Huret M, Kremeur A-S, Lehodey P, Matear R, Moulin C, Murtugudde R, Senina I, Svendsen E (2009) Integrating biogeochemistry and ecology into ocean data assimilation systems. Oceanography 22(3):206–215Google Scholar
  45. Brewin RJW, Lavender SJ, Hardman-Mountford NJ, Hirata T (2010a) A spectral response approach for detecting dominant phytoplankton size class from satellite remote sensing. Acta Oceanol Sin 29:14–32Google Scholar
  46. Brewin RJW, Sathyendranath S, Hirata T, Lavender SJ, Barciela R, Hardman-Mountford NJ (2010b) A three-component model of phytoplankton size class for the Atlantic Ocean. Ecol Model 221:1472–1483Google Scholar
  47. Brewin RJW, Hardman-Mountford NJ, Lavender SJ, Raitsos DE, Hirata T, Uitz J, Devred E, Bricaud A, Ciotti A, Gentili B (2011) An intercomparison of bio-optical techniques for detecting phytoplankton size class from satellite remote sensing. Remote Sens Environ 115:325–339Google Scholar
  48. Broecker WS, Peng TH (1974) Gas exchange rates between air and sea. Tellus 26:21–35Google Scholar
  49. Brown CW, Yoder JA (1994) Coccolithophorid blooms in the global ocean. J Geophys Res 99:7467–7482Google Scholar
  50. Burrows J, Hölzle PE, Goede APH, Visser H, Fricke W (1995) SCIAMACHY – scanning imaging absorption spectrometer for atmospheric chartography. Acta Astronaut 35(7):445–451Google Scholar
  51. Butler JH, Bell TG, Hall BD, Quack B, Carpenter LJ, Williams J (2010) Technical note: ensuring consistent, global measurements of very short-lived halocarbon gases in the ocean and atmosphere. Atmos Chem Phys 10:10327–10330Google Scholar
  52. Carpenter LJ, Monks PS, Galbally IE, Meyer CP, Bandy BJ, Penkett SA (1997) A study of peroxy radicals and ozone photochemistry at coastal sites in the northern and southern hemispheres. J Geophys Res 102:417–427Google Scholar
  53. Carpenter LJ, Lewis AC, Hopkins JR, Read KA, Longley ID, Gallagher MW (2004) Uptake of methanol to the North Atlantic Ocean surface. Glob Biogeochem Cycles 18:GB4027Google Scholar
  54. Carpenter LJ, Fleming Z, Read KA, Lee JD, Moller SJ, Hopkins JR, Purvis RM, Lewis AC, Müller K, Heinold B, Herrmann H, Fomba KW, van Pinxteren D, Müller C, Tegen I, Wiedensohler A, Müller T, Niedermeier N, Achterberg EP, Patey MD, Kozlova EA, Heimann M, Heard DE, Plane JMC, Mahajan A, Oetjen H, Ingham T, Stone D, Whalley LK, Evans MJ, Pilling MJ, Leigh RJ, Monks PS, Karunaharan A, Vaughan S, Arnold SR, Tschitter J, Pohler D, Friess U, Holla R, Mendes LM, Lopez H, Faria B, Manning AJ, Wallace DWR (2010) Seasonal characteristics of tropical marine boundary layer air measured at the Cape Verde Atmospheric Observatory. Atmos Environ 67(2–3):87–140. doi: 10.1007/s10874-011-9206-1CrossRefGoogle Scholar
  55. Carpenter LJ, MacDonald SM, Shaw MD, Kumar R, Saunders RW, Parthipan R, Wilson J, Plane JMC (2013) Atmospheric iodine levels influenced by sea surface emissions of inorganic iodine. Nat Geosci 6:108–111. doi: 10.1038/ngeo1687CrossRefGoogle Scholar
  56. Chance K (1998) Analysis of BrO measurements from the Global Ozone Monitoring Experiment. Geophys Res Lett 25(17):3335–3338. doi: 10.1029/98GL52359CrossRefGoogle Scholar
  57. Chassignet EP, Hurlburt HE, Smedstad OM, Halliwell GR, Hogan PJ, Wallcraft AJ, Baraille R, Bleck R (2007) The HYCOM (HYbrid Coordinate Ocean Model) data assimilative system. J Mar Syst 65(1–4):60–83Google Scholar
  58. Chelton DB, Schlax MG, Freilich MH, Milliff RF (2004) Satellite measurements reveal persistent small-scale features in ocean winds. Science 303:978–983Google Scholar
  59. Ciotti AM, Bricaud A (2006) Retrievals of a size parameter for phytoplankton and spectral light absorption by coloured detrital matter from water-leaving radiances at SeaWiFS channels in a continental shelf off Brazil. Limnol Oceanogr Methods 4:237–253Google Scholar
  60. Clarizia MP, Gommenginger CP, Gleason ST, Srokosz MA, Galdi C, Di Bisceglie M (2009) Analysis of GNSS-R delay-Doppler maps from the UK-DMC satellite over the ocean. Geophys Res Lett 36:L02608. doi: 10.1029/2008GL036292CrossRefGoogle Scholar
  61. Clarke L, Edmonds J, Jacoby H, Pitcher H, Reilly J, Richels R (2007) Scenarios of greenhouse gas emissions and atmospheric concentrations, sub-report 2.1A of synthesis and assessment product 2.1 by the US Climate Change Science Program and the Subcommittee on Global Change Research. Department of Energy, Office of Biological und Environmental Research, Washington, DC, p 154Google Scholar
  62. Clausi DA, Qin AK, Chowdhury MS, Yu P, Maillard P (2010) MAGIC: MAp-guided ice classification system. Can J Remote Sens 36(S1):S13–S25Google Scholar
  63. Claustre H, Antoine D, Boehme L, Boss E, D’Ortenzio F, Fanton D’Andon O, Guinet C, Gruber N, Handegard NO, Hood M, Johnson K, Körtzinger A, Lampitt R, Le Traon P-Y, Lequéré C, Lewis M, Perry MJ, Platt T, Roemmich D, Sathyendranath S, Testor P, Send U, Yoder J (2010) Guidelines towards an integrated ocean observation system for ecosystems and biogeochemical cycles. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of the OceanObs’09: sustained ocean observations and information for society conference, vol 1. ESA Publication, Venice, 21–25 Sept 2009, WPP-306Google Scholar
  64. Collins WD et al (2006) The community climate system model version 3 (CCSM3). J Climate 19:2122–2143. doi: 10.1175/JCLI3761.1CrossRefGoogle Scholar
  65. Corbière A, Metzl N, Reverdin G, Brunet C, Takahashi T (2007) Interannual and decadal variability of the oceanic carbon sink in the North Atlantic subpolar gyre. Tellus B 59(2):168–178. doi: 10.1111/j.1600-0889.2006.00232CrossRefGoogle Scholar
  66. Crisp D, Atlas RM, Breon FM, Brown LR, Burrows JP, Ciais P, Connor BJ, Doney SC, Fung IY, Jacob DJ, Miller CE, O’Brien D, Pawson S, Randerson JT, Rayner P, Salawitch RJ, Sander SP, Sen B, Stephens GL, Tans PP, Toon GC, Wennberg PO, Wofsy SC, Yung YL, Kuang ZM, Chudasama B, Sprague G, Weiss B, Pollock R, Kenyon D, Schroll S (2004) The orbiting carbon observatory (OCO) mission. In: Burrows JP, Thompson AM (eds) Trace constituents in the troposphere and lower stratosphere. Adv Space Res 34(4):700–709Google Scholar
  67. Dacey JW, Howse FA, Michaels AF, Wakeham SG (1998) Temporal variability of dimethylsulfide and dimethylsulfoniopropionate in the Sargasso Sea. Deep-Sea Res I 45:2085–2099. doi: 10.1016/S0967-0637(98)00048-XCrossRefGoogle Scholar
  68. Dalsøren SB, Eide MS, Myhre G, Endresen Ø, Isaksen ISA, Fuglestved JS (2010) Impacts of the large increase in international ship traffic 2000–2007 on tropospheric ozone and methane. Environ Sci Technol 44:2482–2489Google Scholar
  69. de Leeuw G, Kinne S, Leon JF, Pelon J, Rosenfeld D, Schaap M, Veefkind PJ, Veihelmann B, Winker DM, von Hoyningen-Huene W (2011a) Retrieval of aerosol properties. In: Burrows JP, Platt U, Borrell P (eds) The remote sensing of tropospheric composition from space, 536 pp. Springer, Berlin/Heidelberg, pp 359–313. doi: 10.1007/978-3-642-14791-3. ISBN 978-3-642-14790-6CrossRefGoogle Scholar
  70. de Leeuw G, Andreas EL, Anguelova MD, Fairall CW, Lewis ER, O’Dowd C, Schulz M, Schwartz SE (2011b) Production flux of sea spray aerosol. Rev Geophys 49:RG2001. doi: 10.1029/2010RG000349CrossRefGoogle Scholar
  71. del Moral R (2010) The importance of long-term studies of ecosystem reassembly after the eruption of the Kasatochi Island Volcano. Arct Antarct Alp Res 42:335–341Google Scholar
  72. Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York, pp 499–587Google Scholar
  73. Derwent RG, Simmonds PG, Manning AJ, Spain TG (2007) Trends over a 20-year period from 1987 to 2007 in surface ozone at the atmospheric research station, Mace Head, Ireland. Atmos Environ 41:9091–9098Google Scholar
  74. Devred E, Sathyendranath S, Stuart V, Maas H, Ulloa O, Platt T (2006) A two-component model of phytoplankton absorption in the open ocean: Theory and applications. J Geophys Res 111:C03011. doi:03010.01029/02005JC002880Google Scholar
  75. Devred E, Sathyendranath S, Stuart S, Platt T (2011) Absorption-derived phytoplankton cell size: application to satellite ocean-colour data in the Northwest Atlantic. Remote Sens Environ 115:2255–2266Google Scholar
  76. Dickey T, Bates N, Byrne R, Chang G, Chavez F, Feely R, Hanson A, Karl D, Manov D, Moore C, Sabine C, Wanninkhof R (2009) The NOPP O-SCOPE and MOSEAN projects: advanced sensing for ocean observing systems. Oceanography 22(2):168–181Google Scholar
  77. Dickson RR (2009) The integrated Arctic Ocean Observing System (iAOOS) in 2008, Report of the Arctic Ocean Sciences BoardGoogle Scholar
  78. Donlon C et al (2007) The Global Ocean Data Assimilation Experiment high-resolution sea surface temperature pilot project. Bull Am Meteorol Soc 88:1197–1213. doi:http://dx.doi.org/10.1175/BAMS-88-8-1197Google Scholar
  79. Dore JE, Lukas R, Sadler DW, Church MJ, Karl DM (2009) Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proc Natl Acad Sci 106:12235–12240. doi: 10.1073/pnas.0906044106CrossRefGoogle Scholar
  80. Draper DW, Long DG (2004) Evaluating the effect of rain on SeaWinds data. IEEE Trans Geosci Remote Sens 42:1411–1423Google Scholar
  81. Drew GS, Dragoo GS, Renner M, Piatt JF (2010) At-sea observations of marine birds and their habitats before and after the 2008 eruption of Kasatochi Volcano, Alaska. Arct Antarct Alp Res 42:325–334Google Scholar
  82. Duforêt-Gaurier L, Loisel H, Dessailly D, Nordkvist K, Alvain S (2010) Estimates of particulate organic carbon over the euphotic depth from in situ measurements. Application to satellite data over the global ocean. Deep-Sea Research I 57:351–367. doi: 10.1016/j.dsr.2009.12.007CrossRefGoogle Scholar
  83. Duggen S, Croot P, Schacht U, Hoffmann L (2007) Subduction zone volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth: evidence from biogeochemical experiments and satellite data. Geophys Res Lett 34:L01612Google Scholar
  84. Duggen S, Olgun N, Croot P, Hoffmann L, Dietze H, Teschner C (2010) The role of airborne volcanic ash for the surface ocean biogeochemical iron-cycle: a review. Biogeosciences 7:827–844. doi: 10.5194/bg-7-827-2010CrossRefGoogle Scholar
  85. Eden C, Oschlies A (2006) Adiabatic reduction of circulation-related CO2 air-sea flux biases in a North Atlantic carbon-cycle model. Glob Biogeochem Cycles 20:GB2008. doi: 10.1029/2005GB002521CrossRefGoogle Scholar
  86. Eicher GJ, Rousefell GA (1957) Effects of lake fertilization by volcanic activity on abundance of salmon. Adv Sci Limnol Oceanogr 2:70–76Google Scholar
  87. Eicken H, Gradinger R, Salganek M, Shirasawa K, Perovich D, Leppäranta M (eds) (2009) Field techniques for sea ice research. University of Alaska Press, Fairbanks, p 566Google Scholar
  88. Fairall C, Barnier B, Berry B, Bourassa F, Bradley F, Clayon C, de Leeuw G, Drennan W, Gille S, Gulev S, Kent E, McGillis W, Ryabinin V, Smith S, Weller R, Yelland M, Zhang H-M (2010) Observations to quantify air-sea fluxes and their role in climate variability and predictability. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 2. Venice, 21–25 Sept 2009Google Scholar
  89. Fennel K, Wilkin J (2009) Quantifying biological carbon export for the northwest North Atlantic continental shelves. Geophys Res Lett 36:L18605. doi: 10.1029/2009GL039818CrossRefGoogle Scholar
  90. Fennel K, Wilkin J, Previdi M, Najjar R (2008) Denitrification effects on air-sea CO2 flux in the coastal ocean: simulations for the Northwest North Atlantic. Geophys Res Lett 35:L24608. doi: 10.1029/2008GL036147CrossRefGoogle Scholar
  91. Font J, Boutin J, Reul N, Spurgeon P, Ballabrera-Poy J, Chuprin A, Gabarró C, Gourrion J, Guimbard S, Hénocq C, Lavender S, Martin N, Martínez J, McCulloch M, Meirold-Mautner I, Mugérin C, Petitcolin F, Portabella M, Sabia R, Talone M, Tenerelli J, Turiel A, Vergely JL, Waldteufel P, Yin X, Zine S, Delwart S (2012) SMOS first data analysis for sea surface salinity determination. Int J Remote Sens 34:9–10. doi: 10.1080/01431161.2012.716541CrossRefGoogle Scholar
  92. Franke K, Richter A, Bovensmann H, Eyring V, Jöckel P, Hoor P, Burrows JP (2009) Ship emitted NO2 in the Indian Ocean: comparison of model results with satellite data. Atmos Chem Phys 9:7289–7301Google Scholar
  93. Freeland HJ, Roemmich D, Garzoli SL, Le Traon PY, Ravichandran M, Riser S, Thierry V, Wijffels S, Belbéoch M, Gould J, Grant F, Ignazewski M, King B, Klein B, Mork KA, Owens B, Pouliquen S, Sterl A, Suga T, Suk MS, Sutton P, Troisi A, Vélez-Belchi PJ, Xu J (2010) Argo – a decade of progress in proceedings of the OceanObs’09. In: Monahan ED, Spillane MC, Bowyer PA, Higgins MR, Stabeno PJ (eds)/Hall J, Harrison DE, Stammer D (eds) Sustained ocean observations and information for society conference, vol 2. ESA Publication, Venice, 21–25 Sept 2009, WPP-306Google Scholar
  94. Friedlingstein P et al (2006) Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim 19:3337–3353Google Scholar
  95. Friedrich T, Oschlies A (2009a) Basin-scale pCO2 maps estimated from ARGO float data – a model study. J Geophys Res 114:C10012. doi: 10.1029/2009JC005322CrossRefGoogle Scholar
  96. Friedrich T, Oschlies A (2009b) Neural network-based estimates of North Atlantic surface pCO2 from satellite data: a methodological study. J Geophys Res 114:C03020. doi: 10.1029/2007JC004646CrossRefGoogle Scholar
  97. Friedrich T, Oschlies A, Eden C (2006) Role of wind stress and heat fluxes in the interannual-to-decadal variability of air-sea CO2 and O2 fluxes in the North Atlantic. Geophys Res Lett 33:L21S04. doi: 10.1029/2006GL026538CrossRefGoogle Scholar
  98. Frogner P, Gislason SR, Óskarsson N (2001) Fertilizing potential of volcanic ash in ocean surface water. Geology 29:487–490Google Scholar
  99. Fu LL, Cazenave A (2001) Satellite altimetry and earth sciences, a handbook of techniques and applications, vol 69, International geophysics series. Academic, LondonGoogle Scholar
  100. Gabric AJ, Simó R, Cropp RA, Hirst AC, Dachs J (2004) Modeling estimates of the global emission of dimethyl-sulfide under enhanced greenhouse conditions. Glob Biogeochem Cycles 18:GB3016. doi: 10.1029/2004GB002337CrossRefGoogle Scholar
  101. Gantt B, Meskhidze N, Kamykowski D (2009) A new physically-based quantification of marine isoprene and primary organic aerosol emissions. Atmos Chem Phys 9:4915. doi: 10.5194/ACP-9-49152009CrossRefGoogle Scholar
  102. Gardner WD, Mishonov AV, Richardson MJ (2006) Global POC concentrations from in-situ and satellite data. Deep-Sea Res II 53(5–7):718–740. doi: 10.1016/j.dsr2.2006.01.029CrossRefGoogle Scholar
  103. GCOS (2009) Progress report on the implementation of the global observing system for climate in support of the UNFCCC 2004–2008, GCOS-129 (WMO-TD/No. 1489, GOOS-173, GTOS-70). http://gosic.org/ios/GCOS-main-page.htm
  104. GCOS (2010) Implementation plan for the global observing system for climate in support of the UNFCCC (2010 Update) GCOS-138, (GOOS-184, GTOS-76, WMO-TD/No. 1523). http://gosic.org/ios/GCOS-main-page.htm
  105. Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M, Worley PH, Yang Z-L, Zhang M (2012) The community climate system model version 4. J Clim 24(19):4973–4991Google Scholar
  106. Gerilowski K, Tretner A, Krings T, Buchwitz M, Bertagnolio PP, Belemezov F, Erzinger J, Burrows JP, Bovensmann H (2011) MAMAP – a new spectrometer system for column-averaged methane and carbon dioxide observations from aircraft: instrument description and performance analysis. Atmos Meas Tech 4(2):215–243. doi: 10.5194/amt-4-215-2011CrossRefGoogle Scholar
  107. Glantz P, Nilsson EN, Hoyningen-Huene W (2009) Estimating a relationship between aerosol optical thickness and surface wind speed over the ocean. Atmos Res 92:58–68Google Scholar
  108. GlobalView-CO2 (2011) Cooperative atmospheric data integration project – carbon dioxide. CD-ROM, NOAA ESRL, Boulder, ftp.Cmdl.Noaa.Gov, path: Ccg/co2/globalviewGoogle Scholar
  109. Gloor M, Gruber N, Hughes TMC, Sarmiento JL (2001) Estimating net air-sea fluxes from ocean bulk data: methodology and application to the heat cycle. Glob Biogechem Cycles 15:767–782. doi: 10.1029/2000GB001301CrossRefGoogle Scholar
  110. Gloor M, Gruber N, Sarmiento J, Sabine CL, Feely RA, Rödenbeck C (2003) A first estimate of present and preindustrial air-sea CO2 flux patterns based on ocean interior carbon measurements and models. Geophys Res Lett 30:1010. doi: 10.1029/2002GL015594CrossRefGoogle Scholar
  111. Gong SL (2003) A parameterization of sea-salt aerosol source function for sub- and super-micron particles. Glob Biogeochem Cycles 17(4):1097. doi: 10.1029/2003GB002079CrossRefGoogle Scholar
  112. González-Dávila M, Santana-Casiano JM, Rueda MJ, Llinás O (2010) The water column distribution of carbonate system variables at the ESTOC site from 1995 to 2004. Biogeosciences 7:3067–3081. doi: 10.5194/bg-7-3067-2010CrossRefGoogle Scholar
  113. Gordon HR, Boynton GC, Balch WM, Groom SB, Harbour DS, Smyth TJ (2001) Retrieval of coccolithophore calcite concentration from SeaWiFS imagery. Geophys Res Lett 28(8):1587–1590Google Scholar
  114. Gruber N, Doney SC (2008) Ocean biogeochemical and ecological modeling. Encycl Ocean Sci 89–104Google Scholar
  115. Gruber N, Sarmiento JL, Stocker TF (1996) An improved method for detecting anthropogenic CO2 in the oceans. Glob Biogeochem Cycles 10(4):809–837Google Scholar
  116. Gruber N, Gloor M, Fan S-M, Sarmiento JL (2001) Air-sea flux of oxygen estimated from bulk data: implications for the marine and atmospheric oxygen cycle. Glob Biogeochem Cycles 15(4):783–803Google Scholar
  117. Gruber N, Friedlingstein P, Field CB, Valentini R, Heimann M, Richey JE, Romero-Lankao P, Schulze D, Chen C-TA (2004) The vulnerability of the carbon cycle in the 21st century: an assessment of carbon-climate-human interactions. In: Field CB, Raupach MR (eds) The global carbon cycle: integrating humans, climate, and the natural world. Island Press, Washington, DC, pp 45–76Google Scholar
  118. Gruber N, Gloor M, Mikaloff Fletcher SE, Doney SC, Dutkiewicz S, Follows M, Gerber M, Jacobson AR, Joos F, Lindsay K, Menemenlis D, Mouchet A, Mueller SA, Sarmiento JL, Takahashi T (2009) Oceanic sources, sinks, and transport of atmospheric CO2. Glob Biogeochem Cycles 23:GB1005. doi: 10.1029/2008GB003349CrossRefGoogle Scholar
  119. Gruber N, Lachkar Z, Frenzel H, Marchesiello P, Munnich M, McWilliams JC, Nagai T, Plattner G-K (2011) Eddy-induced reduction of biological production in eastern boundary upwelling systems. Nat Geosci 4(11):787–792Google Scholar
  120. Guelle W, Schulz M, Balkanski Y (2001) Influence of the source formulation on modeling the atmospheric global distribution of sea salt aerosol. J Geophys Res 106:27509–27524Google Scholar
  121. Gurney K, Law RM, Denning AS, Rayner PJ, Baker D, Bousquet P, Bruhwiler L, Chen YH, Ciais P, Fan S, Fung IY, Gloor M, Heimann M, Higuchi K, John J, Maki T, Maksyutov S, Masarie K, Peylin P, Prather M, Pak BC, Randerson J, Sarmiento J, Taguchi S, Takahashi T, Yuen CW (2002) Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415:626–630Google Scholar
  122. Hales B, Chipman D, Takahashi T (2004) High-frequency measurement of partial pressure and total concentration of carbon dioxide in seawater using microporous hydrophobic membrane contactors. Limnol Oceanogr Methods 2(2):356–364Google Scholar
  123. Hales B, Takahashi T, Bandstra L (2005) Atmospheric CO2 uptake by a coastal upwelling system. Glob Biogeochem Cycles 19:1–11. doi: 10.1029/2004GB002295CrossRefGoogle Scholar
  124. Halloran PR, Bell TG, Totterdell IJ (2010) Can we trust empirical marine DMS parameterisations within projections of future climate? Biogeosciences 7:1645–1656. doi: 10.5194/bg-7-1645-2010CrossRefGoogle Scholar
  125. Hamazaki T, Kuze A, Kondo K (2004) Sensor system for greenhouse gas observing satellite (GOSAT). In: Strojnik M (ed) Infrared spaceborne remote sensing XII, proceedings of the society of photo-optical instrumentation engineers (SPIE) 5543:275–282. doi: 10.1117/12.560589
  126. Hamme RC, Webley PW, Crawford WR, Whitney FA, DeGrandpre MD, Emerson SR, Eriksen CC, Giesbrecht KE, Gower JFR, Kavanaugh MT, Angelica PM, Sabine CL, Batten SD, Coogan LA, Grundle DS, Lockwood D (2010) Volcanic ash fuels anomalous plankton bloom in subarctic northeast Pacific. Geophys Res Lett 37. doi: 10.1029/2010GL044629Google Scholar
  127. Haywood J, Ramaswamy V, Soden B (1999) Tropospheric aerosol climate forcing in clear sky satellite observation over the oceans. Science 283:1299–1303Google Scholar
  128. Heikes BG, Chang WN, Pilson MEQ, Swift E, Singh HB, Guenther A, Jacob DJ, Field BD, Fall R, Riemer D, Brand L (2002) Atmospheric methanol budget and ocean implication. Glob Biogeochem Cycles 16:1133Google Scholar
  129. Heue KP, Brenninkmeijer CAM, Wagner T, Mies K, Dix B, Frieß U, Martinsson BG, Slemr F, van Velthoven PFJ (2010) Observations of the 2008 Kasatochi volcanic SO2 plume by CARIBIC aircraft DOAS and the GOME-2 satellite. Atmos Chem Phys 10:4699–4713Google Scholar
  130. Hill PG, Zubkov MV, Purdie DA (2010) Differential responses of Prochlorococcus and SAR11-dominated bacterioplankton groups to atmospheric dust inputs in the tropical Northeast Atlantic Ocean. FEMS Microbiol Lett 306(1):82–89. doi: 10.1111/j.1574-6968.2010.01940.xCrossRefGoogle Scholar
  131. Hill PG, Haywood JL, Holland RJ, Purdie DA, Fuchs BM, Zubkov MV (2012) Internal and external influences on near-surface microbial community structure in the vicinity of the Cape Verde Islands. Microb Ecol 63(1):139–148. doi: 10.1007/s00248-011-9952-2CrossRefGoogle Scholar
  132. Hirata T, Aiken J, Hardman-Mountford NJ, Smyth TJ, Barlow RG (2008) An absorption model to derive phytoplankton size classes from satellite ocean colour. Remote Sens Environ 112:3153–3159Google Scholar
  133. Hirata T, Hardman-Mountford NJ, Brewin RJW, Aiken J, Barlow R, Suzuki K, Isada T, Howell E, Hashioka T, Noguchi-Aita M, Yamanaka Y (2011) Synoptic relationships between surface Chlorophyll-a and diagnostic pigments specific to phytoplankton functional types. Biogeosciences 8:311–327Google Scholar
  134. Hoffmann LJ, Peeken I, Lochte K, Assmy P, Veldhuis M (2006) Different reactions of Southern Ocean phytoplankton size classes to iron fertilization. Limnol Oceanogr 51:1217–1229. doi: 10.4319/lo.2006.51.3.1217CrossRefGoogle Scholar
  135. Huang H, Thomas GE, Grainger RG (2010) Relationship between wind speed and aerosol optical depth over remote ocean. Atmos Chem Phys 10:5943–5950. doi: 10.5194/acp-10-5943-2010CrossRefGoogle Scholar
  136. Hurrell JW (1995) Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269(5224):676–679Google Scholar
  137. IOCCP (2007) Surface ocean CO2 variability and vulnerabilities workshop. IOCCP Report 7. UNESCO, Paris, 11–14 Apr 2007. http://www.ioccp.org/
  138. Jacob DJ, Field BD, Li QB, Blake DR, de Gouw J, Warneke C, Hansel A, Wisthaler A, Singh HB, Guenther A (2005) Global budget of methanol: constraints from atmospheric observations. J Geophys Res 110:D08303Google Scholar
  139. Jacobson AR, Mikaloff Fletcher SE, Gruber N, Sarmiento JL, Gloor M (2007) A joint atmosphere–ocean inversion for surface fluxes of carbon dioxide, I: methods and global-scale fluxes. Glob Biogeochem Cycles 21. doi: 10.1029/2005GB002556
  140. Jaeglé L, Steinberger L, Martin RV, Chance K (2005) Global partitioning of NOx sources using satellite observations: relative roles of fossil fuel combustion, biomass burning and soil emissions. Faraday Discuss 130:407–423Google Scholar
  141. Jaeglé L, Quinn PK, Bates TS, Alexander B, Lin J-T (2011) Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations. Atmos Chem Phys 11:3137–3157. doi: 10.5194/acp-11-3137-2011CrossRefGoogle Scholar
  142. Jamet C, Moulin C, Lefèvre N (2007) Estimation of the oceanic pCO2 in the North Atlantic from VOS lines in-situ measurements: parameters needed to generate seasonally mean maps. Ann Geophys 25:2247–2257Google Scholar
  143. Jammoul A, Dumas S, D’Anna B, George C (2009) Photoinduced oxidation of sea salt halides by aromatic ketones: a source of halogenated radicals. Atmos Chem Phys 9(13):4229–4237Google Scholar
  144. Jickells TS, An ZA, Baker AR, Bergametti G, Brooks N, Boyd PW, Duce RA, Hunter KA, Junji C, Kawahata H, Kubilay N, Anderson KK, la Roche J, Liss PS, Mahowald N, Prospero JM, Ridgwell AJ, Tegan I, Torres R (2005) Global iron connections between desert dust, ocean biogeochemistry and climate. Science 308:67–71Google Scholar
  145. Johnson KS, Berelson WM, Boss ES, Chase Z, Claustre H, Emerson SR, Gruber N, Körtzinger A, Perry MJ, Riser SC (2009) Observing biogeochemical cycles at global scales with profiling floats and gliders, prospects for a global array. Oceanography 22(3):216–225Google Scholar
  146. Jones N (2010) Sparks fly over theory that volcano caused salmon boom. Nat News. doi: 10.1038/news.2010.572CrossRefGoogle Scholar
  147. Jones MT, Gislason SR (2008) Rapid releases of metal salts and nutrients following the deposition of volcanic ash into aqueous environments. Geochim Cosmochim Acta 72:3661–3680Google Scholar
  148. Jones CE, Hornsby KE, Sommariva R, Dunk RM, von Glasow R, McFiggans G, Carpenter LJ (2010) Quantifying the contribution of marine organic gases to atmospheric iodine. Geophys Res Lett 37:L18804. doi: 10.1029/2010GL043990CrossRefGoogle Scholar
  149. Jones CE, Andrews SJ, Carpenter LJ et al (2011) Results from the first national UK inter-laboratory calibration for very short-lived halocarbons. Atmos Meas Tech 4:865–874. doi: 10.5194/amt-4-865-2011CrossRefGoogle Scholar
  150. Joos F, Plattner G-K, Stocker TF, Marchal O, Schmittner A (1999) Global warming and marine carbon cycle feedbacks on future atmospheric CO2. Science 284:464–467Google Scholar
  151. Kahn RA, Nelson DL, Garay MJ, Levy RC, Bull MA, Diner DJ, Martonchik MJ, Paradise SR, Hansen EG, Remer LA (2009) MISR aerosol product attributes and statistical comparisons with MODIS. IEEE Trans Geosci Remote Sens 47:4095–4114Google Scholar
  152. Kaleschke L, Heygster G (2004) Towards multisensor microwave remote sensing of frost flowers on sea ice. Ann Glaciol 39:219–222Google Scholar
  153. Keene WC, Long MS, Pszenny AAP, Sander R, Maben JR, Wall AJ, O’Halloran TL, Kerkweg A, Fischer EV, Schrems O (2009) Latitudinal variation in the multiphase chemical processing of inorganic halogens and related species over the eastern North and South Atlantic Oceans. Atmos Chem Phys 9:7361–7385Google Scholar
  154. Kettle AJ, Andreae MO (2000) Flux of dimethylsulfide from the oceans: a comparison of updated data seas and flux models. J Geophys Res 105(D22):26793–26808Google Scholar
  155. Kettle AJ, Andreae MO, Amouroux D et al (1999) A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month. Glob Biogeochem Cycles 13(2):399–444. doi: 10.1029/1999GB900004CrossRefGoogle Scholar
  156. Kieber RJ, Mopper K (1990) Determination of picomolar concentrations of carbonyl-compounds in natural-waters, including seawater, by liquid-chromatography. Environ Sci Technol 24:1477–1481Google Scholar
  157. Kiliyanpilakkil VP, Meskhidze N (2011) Deriving the effect of wind speed on clean marine aerosol optical properties using the A-Train satellites. Atmos Chem Phys 11:11401–11413. doi: 10.5194/acp-11-11401-2011CrossRefGoogle Scholar
  158. Kloster S, Six KD, Feichter J, Maier-Reimer E, Roeckner E, Wetzel P, Stier P, Esch M (2007) Response of dimethyl-sulfide (DMS) in the ocean and atmosphere to global warming. J Geophys Res 112:G03005. doi: 10.1029/2006JG000224CrossRefGoogle Scholar
  159. Knepp TN, Bottenheim J, Carlsen M, Carlson D, Donohoue D, Friederich G, Matrai PA, Netcheva S, Perovich DK, Santini R, Shepson PB, Simpson W, Stehle R, Valentic T, Williams C, Wyss PJ (2010) Development of an autonomous sea ice tethered buoy for the study of ocean–atmosphere-sea ice-snow pack interactions: the O-buoy. Atmos Meas Tech 3:249–261Google Scholar
  160. Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43:59–69Google Scholar
  161. Kokhanovsky AA, de Leeuw G (eds) (2009) Satellite aerosol remote sensing over land. Springer-Praxis, Berlin, p 388. ISBN 978-3-540-69396-3Google Scholar
  162. Korhonen H, Carslaw KS, Spracklen DV, Mann GW, Woodhouse MT (2008) Influence of oceanic dimethyl sulfide emissions on cloud condensation nuclei concentrations and seasonality over the remote Southern Hemisphere oceans: a global model study. J Geophys Res 113:D15204Google Scholar
  163. Körtzinger A, Send U, Lampitt RS, Hartman S, Wallace DWR, Karstensen J, Villagarcia MG, Llinás O, DeGrandpre MD (2008) The seasonal pCO2 cycle at 49°N/16.5°W in the northeastern Atlantic Ocean and what it tells us about biological productivity. J Geophys Res 113:C04020Google Scholar
  164. Kostadinov TS, Siegel DA, Maritorena S (2010) Global variability of phytoplankton functional types from space: assessment via the particle size distribution. Biogeosciences Discuss 7:4295–4340. doi: 10.5194/bg-7-3239-2010CrossRefGoogle Scholar
  165. Krishfield R, Toole J, Proshutinsky A, Timmermans M-L (2008) Automated ice-tethered profilers for seawater observations under pack ice in all seasons. J Atmos Ocean Technol 25(11):2091–2105Google Scholar
  166. Krueger AJ (1983) Sighting of El Chichón sulfur dioxide clouds with the Nimbus 7 total ozone mapping spectrometer. Science 220(4604):1377–1379Google Scholar
  167. Kühn W, Pätsch J, Thomas H, Borges AV, Schiettecatte L-S, Bozec Y, Prowe AEF (2010) Nitrogen and carbon cycling in the North Sea and exchange with the North Atlantic – a model study, Part II: carbon budget and fluxes. Cont Shelf Res 30:1701–1716. doi: 10.1016/j.csr.2010.07.001CrossRefGoogle Scholar
  168. Kwok R (2010) Satellite remote sensing of sea-ice thickness and kinematics: a review. J Glaciol 56(200):1129–1140Google Scholar
  169. Lachkar Z, Gruber N (2013) Response of biological production and air-sea CO2 fluxes to upwelling intensification in the California and Canary Current Systems. J Mar Syst 109–110:149–160. doi: 10.1016/j.jmarsys.2012.04.003CrossRefGoogle Scholar
  170. Lagerloef G, Swift C, LeVine D (1995) Sea surface salinity: the next remote sensing challenge. Oceanography 8:44–50Google Scholar
  171. Lagerloef G, Boutin J, Chao Y, Delcroix T, Font J, Niiler P, Reul N, Riser S, Schmitt R, Stammer D, Wentz F (2010) Resolving the global surface salinity field and variations by blending satellite and in situ observations. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 2. ESA Publication, Venice, 21–25 Sept 2009, WPP-306. doi: 10.5270/OceanObs09.cwp.51
  172. Lana A, Bell TG, Simó R, Vallina SM, Ballabrera-Poy J, Kettle AJ, Dachs J, Bopp L, Saltzman ES, Stefels J, Johnson JE, Liss PS (2011) An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean. Glob Biogeochem Cycles 25(1):GB1004. doi: 10.1029/2010GB003850CrossRefGoogle Scholar
  173. Langmann B, Zaksek K, Hort M, Duggen S (2010) Volcanic ash as fertiliser for the surface ocean. Atmos Chem Phys 10:3891–3899Google Scholar
  174. Lapina K, Heald CL, Spracklen DV, Arnold SR, Allan JD, Coe H, McFiggans G, Zorn SR, Drewnick F, Bates TS, Hawkins LN, Russell LM, Smirnov A, O’Dowd C, Hind AJ (2011) Investigating organic aerosol loading in the remote marine environment. Atmos Chem Phys 11:8847–8860. doi: 10.5194/acp-11-8847-2011CrossRefGoogle Scholar
  175. Law CS, Brévière E, de Leeuw G, Guieu C, Garçon VC, Kieber DJ, Kontradowitz S, Paulmier A, Quinn PK, Saltzman E, Stefels J, von Glasow R (2013) Evolving research directions in Surface Ocean Lower Atmosphere (SOLAS) science. Environ Chem 10:1–16, http://dx.doi.org/10.1071/EN12159Google Scholar
  176. Le Clainche Y, Levasseur M, Vezina A et al (2006) Modelling analysis of the effect of iron enrichment on DMS dynamics in the NE Pacific (SERIES experiment). J Geophys Res 111. doi: 10.1029/2005JC002947
  177. Le Clainche Y et al (2010) A first appraisal of prognostic ocean DMS models and prospects for their use in climate models. Glob Biogeochem Cycles 24:GB3021. doi: 10.1029/2009GB003721CrossRefGoogle Scholar
  178. Le Quéré C, Aumont O, Monfray P, Orr J (2003) Propagation of climatic events on ocean stratification, marine biology and CO2: case studies over the 1979–1999 period. J Geophys Res 108. doi: 10.1029/2001JC000920
  179. Le Quéré CL, Harrison SP, Prentice C, Buitenhuis ET, Aumont O, Bopp L, Claustre H, Cotrim Da Cunha L, Geider R, Giraud X, Klaas C, Kohfeld KE, Legendre L, Manizza M, Platt T, Rivkin RB, Sathyendranath S, Uitz J, Watson AJ, Wolf-Gladrow D (2005) Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Glob Change Biol 11:2016–2040. doi: 10.1111/j.1365-2486.2005.1004.xCrossRefGoogle Scholar
  180. Le Quéré C, Rödenbeck C, Buitenhuis ET, Conway TJ, Langenfelds R, Gomez A, Labuschagne C, Ramonet M, Nakazawa T, Metzl N, Gillett N, Heimann M (2007) Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316:1735–1738Google Scholar
  181. Le Vine DML, Lagerloef GSE, Colomb FR, Yueh SH, Member S, Pellerano FA, Member S (2007) Aquarius: an instrument to monitor sea surface salinity from space IEEET. Geosci Remote 45(7):2040–2050Google Scholar
  182. Lee JD, Moller SJ, Read KA, Lewis AC, Mendes L, Carpenter LJ (2009a) Year-round measurements of nitrogen oxides and ozone in the tropical North Atlantic marine boundary layer. J Geophys Res 114:D21302. doi: 10.1029/2009JD011878CrossRefGoogle Scholar
  183. Lee KH, Li Z, Kim YJ, Kokhanovsky AA (2009b) Atmospheric aerosol monitoring from satellite observations: a history of three decades. In: Kim YJ, Platt U, Gu MB, Iwahashi H (eds) Atmospheric and biological environmental monitoring. Springer, BerlinGoogle Scholar
  184. Lefèvre N, Taylor A (2002) Estimating pCO2 from sea surface temperatures in the Atlantic gyres. Deep-Sea Res I 49(3):539–554Google Scholar
  185. Lefèvre N, Watson AJ, Watson AR (2005) A comparison of multiple regression and neural network techniques for mapping in situ pCO2 data. Tellus 57B:375–384Google Scholar
  186. Lehahn Y, Koren I, Boss E, Ben-Ami Y, Altaratz O (2010) Estimating the maritime component of aerosol optical depth and its dependency on surface wind speed using satellite data. Atmos Chem Phys 10:6711–6720. doi: 10.5194/acp-10-6711-2010CrossRefGoogle Scholar
  187. Lelieveld J, van Aardenne J, Fischer H, de Reus M, Williams J, Winkler P (2004) Increasing ozone over the Atlantic Ocean. Science 304:1483–1487Google Scholar
  188. Lerot C, Stavrakou T, De Smedt I, Müller J-F, Van Roozendael M (2010) Glyoxal vertical columns from GOME-2 backscattered light measurements and comparisons with a global model. Atmos Chem Phys 10:12059–12072Google Scholar
  189. Lewis ER, Schwartz SE (2004) Sea salt aerosol production: mechanisms, methods, measurements, and models: a critical review. American Geophysical Union, Washington, DCGoogle Scholar
  190. Li X, Maring H, Savoie D, Voss K, Prospero JM (1996) Dominance of mineral dust in aerosol light-scattering in the North Atlantic trade winds. Nature 380(6573):416–419. doi: 10.1038/380416a0CrossRefGoogle Scholar
  191. Lin II, Hu C, Li YH, Ho TY, Fischer TP, Wong GTF, Wu J, Huang CW, Chu DA, Ko DS, Chen JP (2011) Fertilization potential of volcanic dust in the low-nutrient low-chlorophyll western North Pacific subtropical gyre: satellite evidence and laboratory study. Glob Biogeochem Cycles 25:GB1006Google Scholar
  192. Lindenthal A (2011) Phytoplankton growth in the NE Pacific. Diploma thesis, Institute of Geophysics, University of Hamburg, Germany (written in German)Google Scholar
  193. Liss PS, Hatton AD, Malin G, Nightingale PD, Turner SM (1997) Marine sulphur emissions. Philos Trans R Soc Lond B Biol Sci 352:159. doi: 10.1098/RSTB.1997.0011CrossRefGoogle Scholar
  194. Liu WT (2002) Progress in scatterometer application. J Oceanogr 58:121–136Google Scholar
  195. Liu X, Penner JE, Das B, Bergmann D, Rodriguez JM, Strahan S, Wang M, Feng Y (2007) Uncertainties in global aerosol simulations, assessment using three meteorological data sets. J Geophys Res 112:D11212. doi: 10.1029/2006JD008216CrossRefGoogle Scholar
  196. Liu WT, Tang W, Xie X, Navalgund R, Xu K (2008) Power density of ocean surface wind-stress from international scatterometer tandem missions. Int J Remote Sens 29:6109–6116Google Scholar
  197. Loisel H, Bosc E, Stramski D, Oubelkheir K, Deschamps PY (2001) Seasonal variability of the backscattering coefficient in the Mediterranean Sea based on Satellite SeaWiFS imagery. J Geophys Res Lett 28(22):4203–4206Google Scholar
  198. Loisel H, Nicolas JM, Deschamps PY, Frouin R (2002) Seasonal and inter- annual variability of particulate organic matter in the global ocean. Geophys Res Lett 29(49):2196. doi: 10.1029/2002GL015948CrossRefGoogle Scholar
  199. Longhurst AR (2007) Ecological geography of the sea, 2nd edn. Academic, Burlington/BostonGoogle Scholar
  200. Lüger H, Wallace DWR, Körtzinger A, Nojiri Y (2004) The pCO2 varability in the midlatitude North Atlantic Ocean during a full annual cycle. Glob Biogeochem Cycles 18:GB3023. doi: 10.1029/2003GB002200CrossRefGoogle Scholar
  201. Mahajan AS, Plane JMC, Oetjen H, Mendes L, Saunders RW, Saiz-Lopez A, Jones CE, Carpenter LJ, McFiggans GB (2010) Measurement and modelling of tropospheric reactive halogen species over the tropical Atlantic Ocean. Atmos Chem Phys 10:4611–4624Google Scholar
  202. Marbach T, Beirle S, Platt U, Hoor P, Wittrock F, Richter A, Vrekoussis M, Grzegorski M, Burrows JP, Wagner T (2009) Satellite measurements of formaldehyde linked to shipping emissions. Atmos Chem Phys 9:8223–8234Google Scholar
  203. Maritorena S, d’Andon OHF, Mangin A, Siegel DA (2010) Merged satellite ocean color data products using a bio-optical model: characteristics, benefits and issues. Remote Sens Environ 114(8):1791–1804Google Scholar
  204. Mårtensson EM, Nilsson ED, de Leeuw G, Cohen LH, Hansson H-C (2003) Laboratory simulations and parameterizations of the primary marine aerosol productions. J Geophys Res 108:4297Google Scholar
  205. Martin JH, Fitzwater SE (1988) Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331:341–343Google Scholar
  206. Martin M, Dash P, Ignatov A, Banzon V, Beggs H, Brasnett B, Cayula J-F, Cummings J, Donlon C, Gentemann C, Grumbine R, Ishizaki S, Maturi E, Raynolds RW, Roberts-Jones J (2012) Group for High Resolution Sea Surface temperature (GHRSST) analysis fields inter-comparisons. Part 1: a GHRSST multi-product ensemble (GMPE). Deep-Sea Res II. http://dx.doi.org/10.1016/j.dsr2.2012.04.013Google Scholar
  207. Martino M, Mills GP, Woeltjen J, Liss PS (2009) A new source of volatile organoiodine compounds in surface seawater. Geophys Res Lett 36:L01609. doi: 10.1029/2008GL036334CrossRefGoogle Scholar
  208. Massom RA (2009) Principal uses of remote sensing in sea ice field research. In: Eicken H, Gradinger R, Salganek M, Shirasawa K, Perovich D, Leppäranta M (eds) Field techniques for sea ice research. University of Alaska Press, Fairbanks, pp 405–466Google Scholar
  209. McDonald D, Pedersen TF (1999) Multiple late Quaternary episodes of exceptional diatom production in the Gulf of Alaska. Deep-Sea Res II 46:2993–3017Google Scholar
  210. McGillicuddy DJ, Johnson RJ, Siegel DA, Michaels AF, Bates NR, Knap AH (1999) Mesoscale variations of biogeochemical properties in the Sargasso Sea. J Geophys Res 104:13381–13394Google Scholar
  211. McGillicuddy DJ, Anderson LA, Bates NR, Bibby T, Buesseler KO, Carlson CA, Davis CS, Ewart C, Falkowski PG, Goldthwait SA, Hansell DA, Jenkins WJ, Johnson R, Kosnyrev VK, Ledwell JR, Li QP, Siegel DA, Steinberg DK (2007) Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science 316(5827):1016–1021. doi: 10.1126/science.1136256CrossRefGoogle Scholar
  212. McKinley GA, Follows MJ, Marshall J (2004) Mechanisms of air-sea CO2 flux variability in the equatorial Pacific and the North Atlantic. Glob Biogeochem Cycles 18:GB2011. doi: 10.1029/2003GB002179CrossRefGoogle Scholar
  213. Meissner T, Wentz FJ (2009) Wind-vector retrievals under rain with passive satellite microwave radiometers. IEEE Trans Geosci Remote Sens 47(9):3065–3083. doi: 10.1109/TGRS.2009.2027012CrossRefGoogle Scholar
  214. Mikaloff Fletcher SE, Gruber N, Jacobson AR, Doney SC, Dutkiewicz S, Gerber M, Gloor M, Follows M, Joos F, Lindsay K, Menemenlis D, Mouchet A, Müller SA, Sarmiento JL (2007) Inverse estimates of the oceanic sources and sinks of natural CO2 and the implied oceanic transport. Glob Biogeochem Cycles 21:GB1010. doi: 10.1029/2006GB002751CrossRefGoogle Scholar
  215. Mikaloff-Fletcher SE, Gruber N, Jacobson AR, Doney SC, Dutkiewicz S, Gerber M, Follows M, Joos F, Lindsay K, Menemenlis D, Mouchet A, Mueller SA, Sarmiento JL (2006) Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean. Glob Biogeochem Cycles 20:GB2002. doi: 10.1029/2005GB002530CrossRefGoogle Scholar
  216. Mills MM, Ridame C, Davey M, La Roche J, Geider RJ (2004) Iron and phosphorous co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429:292–294Google Scholar
  217. Mohanan EC, O’Muircheartaigh IG (1980) Optimal power-law description of oceanic whitecap coverage dependence on wind speed. J Phys Ocean 10:2094–2099Google Scholar
  218. Montzka SA, Reimann S (2011) Ozone depleting substances (ODS’s) and related chemicals, Chapter 1 in: scientific assessment of ozone depletion: 2010. Global Ozone Research and Monitoring Project, Report No. 52, 373 ppGoogle Scholar
  219. Moore CM, Mills MM, Achterberg EP, Geider RJ, La Roche J, Lucas MI, McDonagh EL, Pan X, Poulton AJ, Rijkenberg MJA, Suggett DJ, Ussher SJ, Woodward MJ (2009) Large-scale distribution of Atlantic nitrogen fixation controlled by iron availability. Nat Geosci. doi: 10.1038/ngeo667CrossRefGoogle Scholar
  220. Mouw CB, Yoder JA (2010) Optical determination of phytoplankton size composition from global SeaWiFS imagery. J Geophys Res 115:C12018. doi: 10.1029/2010JC006337CrossRefGoogle Scholar
  221. Mulcahy JP, O’Dowd CD, Jennings SG, Ceburnis D (2008) Significant enhancement of aerosol optical depth in marine air under high wind conditions. Geophys Res Lett 35:L16810. doi: 10.1029/2008GL034303CrossRefGoogle Scholar
  222. Müller C, Iinuma Y, Karstensen J, van Pinxteren D, Lehmann S, Gnauk T, Herrmann H (2009) Seasonal variation of aliphatic amines in marine sub-micrometer particles at the Cape Verde islands. Atmos Chem Phys 9(24):9587–9597Google Scholar
  223. Myhre G, Stordal F, Johnsrud M, Ignatov A, Mishchenko MI, Geogdzhayev IV, Tanré D, Deuzé JL, Goloub P, Nakajima T, Higurashi A, Torres O, Holben BN (2004) Intercomparison of satellite retrieved aerosol optical depth over ocean. J Atmos Sci 61:499–513Google Scholar
  224. Myhre G, Stordal F, Johnsrud M, Diner DJ, Geogdzhayev IV, Haywood JM, Holben BN, Holzer-Popp T, Ignatov A, Kahn RA, Kaufman YJ, Loeb N, Martonchik JV, Mishchenko MI, Nalli NR, Remer LA, Schroedter-Homscheidt M, Tanré D, Torres O, Wang M (2005) Intercomparison of satellite retrieved aerosol optical depth over ocean during the period September 1997 to December 2000. Atmos Chem Phys 5:1697–1719Google Scholar
  225. Newsam GN, Enting IG (1988) Inverse problems in atmospheric constituent studies: I. Determination of surface sources under a diffusive transport approximation. Inverse Probl 4:1037–1054Google Scholar
  226. Nie C, Long DG (2008) A C-band scatterometer simultaneous wind/rain retrieval method. IEEE Trans Geosci Remote Sens 46:3618–3632Google Scholar
  227. Nightingale PD, Malin G, Law CS, Watson AJ, Liss PS, Liddicoat MI, Boutin J, Upstill-Goddard RC (2000) In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Glob Biogeochem Cycles 14(1):373–387Google Scholar
  228. Nowlan CR, Liu X, Chance K, Cai Z, Kurosu TP, Lee C, Martin RV (2011) Retrievals of sulfur dioxide from the Global Ozone Monitoring Experiment 2 (GOME-2) using an optimal estimation approach: algorithm and initial validation. J Geophys Res 116:D18301. doi: 10.1029/2011JD015808CrossRefGoogle Scholar
  229. O’Dowd CD, de Leeuw G (2007) Marine aerosol production: a review of the current knowledge. Philos Trans R Soc A 365:1753–1774. doi: 10.1098/rsta.2007.2043CrossRefGoogle Scholar
  230. O’Dowd CD, Facchini MC, Cavalli F, Ceburnis D, Mircea M, Decesari S, Fuzzi S, Yoon YL, Putaud JP (2004) Biogenically driven organic contribution to marine aerosol. Nature 431:676. doi: 10.1038/NATURE02959CrossRefGoogle Scholar
  231. O’Dowd C, Scannell C, Mulcahy J, Jennings SG (2010) Wind speed influences on marine aerosol optical depth. Adv Meteorol 2010:830846. doi: 10.1155/2010/830846CrossRefGoogle Scholar
  232. Okin GS, Baker AR, Tegen I, Mahowald NM, Dentener FJ, Duce RA, Galloway JN, Hunter K, Kanakidou M, Kubilay N, Prospero JM, Sarin M, Surapipith V, Uematsu M, Zhu T (2011) Impacts of atmospheric nutrient deposition on marine productivity: roles of nitrogen, phosphorus, and iron. Glob Biogeochem Cycles 25:GB2022. doi: 10.1029/2010GB003858CrossRefGoogle Scholar
  233. Olgun N, Duggen S, Croot P, Dietze H, Schacht U, Oskarsson N, Siebe C, Auer A (2011) Surface ocean iron fertilization: the role of subduction zone and hotspot volcanic ash and fluxes into the Pacific Ocean. Glob Biogeochem Cycles 25. doi: 10.1029/2009GB003761Google Scholar
  234. Olgun N, Duggen S, Langmann B, Hort M, Waythomas CF, Hoffmann L, Croot P (2013) Geochemical evidence for oceanic iron fertilization from the Kasatochi volcanic eruption and evaluation of the potential impacts on sockeye salmon population. Mar Ecol Prog Ser (in press)Google Scholar
  235. Olsen A, Bellerby RGJ, Johannesseen T, Omar AM, Skjelvan I (2003) Interannual variability in the wintertime air-sea flux of carbon dioxide in the northern North Atlantic, 1981–2001. Deep-Sea Res I 50:1323–1338Google Scholar
  236. Ono S, Ennyu A, Najjar RG, Bates NR et al (2001) Shallow remineralisation in the Sargasso Sea estimated from seasonal variations in oxygen, dissolved inorganic carbon and nitrate. Deep-Sea Res II 48(8–9):1567–1582. doi: 10.1016/S0967-0645(00)00154-5CrossRefGoogle Scholar
  237. Parsons TR, Whitney FA (2012) Did volcanic ash from Mt. Kasatochi in 2008 contribute to a phenomenal increase in Fraser River sockeye salmon (Oncorhynchus nerka) in 2010? Fish Oceanogr 21:374–377. doi: 10.1111/j.1365-2419.2012.00630.xCrossRefGoogle Scholar
  238. Perovich D (2009) Automatic measurement stations. In: Eicken H, Gradinger R, Salganek M, Shirasawa K, Perovich D, Leppäranta M (eds) Field techniques for sea ice research. University of Alaska Press, Fairbanks, pp 383–394Google Scholar
  239. Perovich DK, Eicken H, Meier W (2012) International coordination to improve studies of changes in Arctic sea ice cover. Eos 93(12):128Google Scholar
  240. Pfeil B, Olsen A, Bakker DCE, Hankin S, Koyuk H, Kozyr A, Malczyk J, Manke A, Metzl N, Sabine CL, Akl J, Alin SR, Bates N, Bellerby RGJ, Borges A, Boutin J, Brown PJ, Cai W-J, Chavez FP, Chen A, Cosca C, Fassbender AJ, Feely RA, González-Dávila M, Goyet C, Hales B, Hardman-Mountford N, Heinze C, Hood M, Hoppema M, Hunt CW, Hydes D, Ishii M, Johannessen T, Jones SD, Key RM, Körtzinger A, Landschützer P, Lauvset SK, Lefèvre N, Lenton A, Lourantou A, Merlivat L, Midorikawa T, Mintrop L, Miyazaki C, Murata A, Nakadate A, Nakano Y, Nakaoka S, Nojiri Y, Omar AM, Padin XA, Park G-H, Paterson K, Perez FF, Pierrot D, Poisson A, Ríos AF, Salisbury J, Santana-Casiano JM, Sarma VVSS, Schlitzer R, Schneider B, Schuster U, Sieger R, Skjelvan I, Steinhoff T, Suzuki T, Takahashi T, Tedesco K, Telszewski M, Thomas H, Tilbrook B, Tjiputra J, Vandemark D, Veness T, Wanninkhof R, Watson AJ, Weiss R, Wong CS, Yoshikawa-Inoue H (2013) A uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT). Earth Syst Sci Data 5:125–143. doi: 10.5194/essd-5-125-2013Google Scholar
  241. Pierce JR, Adams PJ (2006) Global evaluation of CCN formation by direct emission of sea salt and growth of ultrafine sea salt. J Geophys Res 111:D06203. doi: 10.1029/2005JD006186CrossRefGoogle Scholar
  242. Pierrot D, Neill C, Sullivan K, Castle R, Wanninkhof R, Lüger H, Johannessen T, Olsen A, Feely RA, Cosca CE (2009) Recommendations for autonomous underway pCO2 measuring systems and data reduction routines. Deep-Sea Res II 56:512–522. doi: 10.1016/j.dsr2.2008.12.005CrossRefGoogle Scholar
  243. Plass-Dülmer C, Koppmann R, Ratte M, Rudolph J (1995) Light nonmethane hydrocarbons in seawater. Glob Biogeochem Cycles 9:79. doi: 10.1029/94GB02416CrossRefGoogle Scholar
  244. Powell CF, Baker AR, Jickells TD, Bange HW (in preparation) Estimation of the atmospheric flux of iron, nitrogen and phosphate to the eastern tropical North AtlanticGoogle Scholar
  245. Previdi M, Fennel K, Wilkin J, Haidvogel DB (2009) Interannual variability in atmospheric CO2 uptake on the Northeast US Continental Shelf. J Geophys Res 114:G04003. doi: 10.1029/2008JG000881CrossRefGoogle Scholar
  246. Prinn RG, Weiss RF, Fraser PJ et al (2000) A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE. J Geophys Res 105:17751–17792. doi: 10.1029/2000JD900141CrossRefGoogle Scholar
  247. Prospero JM, Lamb PJ (2003) African droughts and dust transport to the Caribbean: climate change implications. Science 302:1024–1027Google Scholar
  248. Prospero JM, Nees RT (1986) Impact of the North African drought and El Nino on mineral dust in the Barbados trade winds. Nature 320(6064):735–738. doi: 10.1038/320735a0CrossRefGoogle Scholar
  249. Prowe AEF, Thomas H, Pätsch J, Kühn W, Bozec Y, Schiettecatte L-S, Borges AV, de Baar HJW (2009) Mechanisms controlling the air-sea CO2 flux in the North Sea. Cont Shelf Res 29:1801–1808. doi: 10.1016/j.csr.2009.06.003CrossRefGoogle Scholar
  250. Qin AK, Clausi DA (2010) Multivariate image segmentation using semantic region growing with adaptive edge penalty. IEEE Trans Image Proc 19:2157–2170Google Scholar
  251. Quack B, Atlas E, Petrick G, Schauffler S, Wallace D (2004) Oceanic bromoform sources for the tropical atmosphere. Geophys Res Lett. doi: 10.1029/2004GL020597CrossRefGoogle Scholar
  252. Quack B, Peeken I, Petrick G, Nachtigall K (2007) Oceanic distribution and sources of bromoform and dibromomethane in the Mauritanian upwelling. J Geophys Res 112:C10006. doi: 10.1029/2006JC003803CrossRefGoogle Scholar
  253. Quilfen Y, Vandemark D, Chapron B, Feng H, Sienkiewicz J (2011) Estimating gale to hurricane force winds using the satellite altimeter. J Atmos Ocean Technol 28:453–458. doi: 10.1175/JTECH-D-10-05000.1CrossRefGoogle Scholar
  254. Quinn PK, Bates TS (2005) Regional aerosol properties: comparisons of boundary layer measurements from ACE 1, ACE 2, Aerosols99, INDOEX, ACE Asia, TARFOX, and NEAQS. J Geophys Res 110(D14):D14202Google Scholar
  255. Raitsos DE, Lavender SJ, Maravelias CD, Haralambous J, Richardson AJ, Reid PC (2008) Identifying four phytoplankton functional types from space: an ecological approach. Limnol Oceanogr 53(2):605–613Google Scholar
  256. Read KA, Mahajan AS, Carpenter LJ, Evans MJ, Faria BE, Heard DE, Hopkins JR, Lee JD, Moller SJ, Lewis AC, Mendes L, McQuaid JB, Oetjen H, Saiz-Lopez A, Pilling MJ, Plane JMC (2008) Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean. Nature 453:1232–1235. doi: 10.1038/nature07035CrossRefGoogle Scholar
  257. Read KA, Carpenter LJ, Arnold SR, Beale R, Nightingale PD, Hopkins JR, Lewis AC, Mendes L, Fleming ZL (2012) Time-series and atmospheric budgets of acetone, methanol and acetaldehyde in remote marine air at the Cape Verde Atmospheric Observatory. Environ Sci Technol 46(20):11028–11039. doi: 10.1021/es302082pCrossRefGoogle Scholar
  258. Remer LA et al (2008) Global aerosol climatology from the MODIS satellite sensors. J Geophys Res 113:D14S07. doi: 10.1029/2007JD009661CrossRefGoogle Scholar
  259. Reul N, Tenerelli J, Boutin J, Chapron B, Paul F, Brion E, Gaillard F, Archer O (2012a) Overview of the first SMOS sea surface salinity products. Part I: quality assessment for the second half of 2010. IEEE Trans Geosci Remote Sens 99:1–12, http://dx.doi.org/10.1109/TGRS.2012.2188408
  260. Reul N, Tenerelli J, Chapron B, Vandemark D, Quilfen Y, Kerr Y (2012b) SMOS satellite L-band radiometer: a new capability for ocean surface remote sensing in hurricanes. J Geophys Res 117:C02006. doi: 10.1029/2011JC007474CrossRefGoogle Scholar
  261. Richter A, Wittrock F, Eisinger M, Burrows JP (1998) GOME observations of tropospheric BrO in Northern Hemispheric spring and summer 1997. Geophys Res Lett 25:2683–2686Google Scholar
  262. Richter A, Eyring V, Burrows JP, Bovensmann H, Lauer A, Sierk B, Crutzen PJ (2004) Satellite measurements of NO2 from international shipping emissions. Geophys Res Lett 31:L23110. doi: 10.1029/2004GL020822CrossRefGoogle Scholar
  263. Rijkenberg MJA, Langlois RJ, Mills MM, Patey MD, Hill PG, Nielsdottir MC, Compton TJ, La Roche J, Achterberg EP (2011) Environmental forcings of nitrogen fixation in the eastern (sub-) tropical North Atlantic Ocean. PlosOne 6(12):e28989Google Scholar
  264. Rintoul SR, Sparrow M, Meredith MP, Wadley V, Speer K, Hofmann E, Summerhayes C, Urban E, Bellerby R (eds) (2012) The Southern Ocean observing system: initial science and implementation strategy. SOOS International Project Office, Hobart. ISBN 978-0-948277-27-6Google Scholar
  265. Rödenbeck C, Houweling S, Gloor M, Heimann M (2003) CO2 Flux History 1982–2001 Inferred from atmospheric data using a global inversion of atmospheric transport. Atmos Chem Phys 3:1919–1964Google Scholar
  266. Rödenbeck C, Le Quéré C, Heimann M, Keeling R (2008) Interannual variability in oceanic biogeochemical processes inferred by inversion of atmospheric O2/N2 and CO2 data. Tellus 60B:685Google Scholar
  267. Roeckner E et al (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Clim 19:3771–3791. doi: 10.1175/JCLI3824.1CrossRefGoogle Scholar
  268. Roemmich D et al (2009) Argo: the challenge of continuing 10 years of progress. Oceanography 2(30):46–55. http://www.knmi.nl/publications/fulltexts/roemmich_et_al.oceanography_godae_09.pdf. Accessed 25 Jan 2012Google Scholar
  269. Röhrs J, Kaleschke L, Bröhan D, Siligam PK (2012) An algorithm to detect sea ice leads by using AMSR-E passive microwave imagery. The Cryosphere 6(2):343–352Google Scholar
  270. Roy T, Bopp L, Gehlen M, Schneider B, Cadule P, Frölicher TL, Segschneider J, Tjiputra J, Heinze C, Joos F (2011) Regional impacts of climate change and atmospheric CO2 on future ocean carbon uptake: a multi-model linear feedback analysis. J Clim 24:2300–2318Google Scholar
  271. Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Ríos AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371Google Scholar
  272. Sabine CL, Hankin S, Koyuk H, Bakker DCE, Pfeil B, Olsen A, Metzl N, Kozyr A, Fassbender A, Manke A, Malczyk J, Akl J, Alin SR, Bellerby RGJ, Borges A, Boutin J, Brown PJ, Cai W-J, Chavez FP, Chen A, Cosca C, Feely RA, González-Dávila M, Goyet C, Hardman-Mountford N, Heinze C, Hoppema M, Hunt CW, Hydes D, Ishii M, Johannessen T, Key RM, Körtzinger A, Landschützer P, Lauvset SK, Lefèvre N, Lenton A, Lourantou A, Merlivat L, Midorikawa T, Mintrop L, Miyazaki C, Murata A, Nakadate A, Nakano Y, Nakaoka S, Nojiri Y, Omar AM, Padin XA, Park G-H, Paterson K, Perez FF, Pierrot D, Poisson A, Ríos AF, Salisbury J, Santana Casiano JM, Sarma VVSS, Schlitzer R, Schneider B, Schuster U, Sieger R, Skjelvan I, Steinhoff T, Suzuki T, Takahashi T, Tedesco K, Telszewski M, Thomas H, Tilbrook B, Vandemark D, Veness T, Watson AJ, Weiss R, Wong CS, Yoshikawa-Inoue H (2013) Gridding of the Surface Ocean CO2 Atlas (SOCAT) gridded data products. Earth Syst Sci Data 5:145–153. doi: 10.5194/essd-5-145-2013Google Scholar
  273. Sadeghi A, Dinter T, Vountas M, Taylor B, Peeken I, Bracher A (2011) Improvements to the PhytoDOAS method for the identification of major Phytoplankton groups using high spectrally resolved satellite data. Ocean Sci Discuss 8:2271–2311. doi: 10.5194/osd-8-2271-2011CrossRefGoogle Scholar
  274. Sadeghi A, Dinter T, Vountas M, Taylor B, Altenburg-Soppa M, Bracher A (2012) Remote sensing of coccolithophore blooms in selected oceanic regions using the PhytoDOAS method applied to hyper-spectral satellite data. Biogeosciences 9:2127–2143. doi: 10.5194/bg-9-2127-2012CrossRefGoogle Scholar
  275. Saiz-lopez A, Chance K, Liu X, Kurosu TP, Sander S (2007) First observations of iodine oxide from space. Geophys Res Lett 34:L12812. doi: 10.1029/2007GL030111CrossRefGoogle Scholar
  276. Sander R, Crutzen PJ (1996) Model study indicating halogen activation and ozone destruction in polluted air masses transported to the sea. J Geophys Res 101:9121–9138Google Scholar
  277. Sarmiento JL, Hughes TMC, Stouffer RJ, Manabe S (1998) Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393:245–249Google Scholar
  278. Sathyendranath S, Watts L, Devred E, Platt T, Caverhill C, Maass H (2004) Discrimination of diatoms from other phytoplankton using ocean-colour data. Mar Ecol Prog Ser 272:59–68Google Scholar
  279. Schönhardt A, Richter A, Wittrock F, Kirk H, Oetjen H, Roscoe HK, Burrows JP (2008) Observations of iodine monoxide columns from satellite. Atmos Chem Phys 8:637–653Google Scholar
  280. Schuster U et al (2009) Trends in North Atlantic sea-surface fCO2 from 1990 to 2006. Deep-Sea Res II 56(8–10):620–629. doi: 10.1016/j.dsr2.2008.12.011CrossRefGoogle Scholar
  281. Schuster U, McKinley GA, Bates N, Chevallier F, Doney SC, Fay AR, González-Dávila M, Gruber N, Jones S, Krijnen J, Landschützer P, Lefèvre N, Manizza M, Mathis J, Metzl N, Olsen A, Rios AF, Rödenbeck C, Santana-Casiano JM, Takahashi T, Wanninkhof R, Watson AJ (2012) Atlantic and Arctic sea-air CO2 Fluxes, 1990–2009. Biogeosciences Discuss 9:10669–10724Google Scholar
  282. Siegel DA, Peterson P, McGillicuddy DJ, Maritorena S, Nelson NB (2011) Bio-optical footprints created by mesoscale eddies in the Sargasso Sea. Geophys Res Lett 38:L13608. doi: 10.1029/2011GL047660CrossRefGoogle Scholar
  283. Simó R, Dachs J (2002) Global ocean emission of dimethyl-sulfide predicted from biogeophysical data. Glob Biogeochem Cycles 16(4):1018. doi: 10.1029/2001GB001829CrossRefGoogle Scholar
  284. Simó R, Pedrós-Alio C (1999) Role of vertical mixing in controlling the oceanic production of dimethyl sulphide. Nature 402:396–399Google Scholar
  285. Singh HB, Kanakidou M, Crutzen PJ, Jacob DJ (1995) High concentrations and photochemical fate of oxygenated hydrocarbons in the global troposphere. Nature 378:50–54Google Scholar
  286. Singh HB, Tabazadeh A, Evans MJ, Field BD, Jacob DJ, Sachse G, Crawford JH, Shetter R, Brune WH (2003) Oxygenated volatile organic chemicals in the oceans: interferences and implications based on atmospheric observations and air–sea flux exchange models. Geophys Res Lett 30:1862. doi: 10.1029/2003GL017933CrossRefGoogle Scholar
  287. Small R, deSzoeke SP, Xie SP, O’Neill LO, Seo H, Song Q, Cornillon P, Spall M, Minobe S (2008) Air-sea interaction over ocean fronts and eddies. Dyn Atmos Ocean 45:274–319Google Scholar
  288. Smirnov A, Holben BN, Giles DM, Slutsker I, O’Neill NT, Eck TF, Macke A, Croot P, Courcoux Y, Sakerin SM, Smyth TJ, Zielinski T, Zibordi G, Goes JI, Harvey MJ, Quinn PK, Nelson NB, Radionov VF, Duarte CM, Losno R, Sciare J, Voss KJ, Kinne S, Nalli NR, Joseph E, Krishna Moorthy K, Covert DS, Gulev SK, Milinevsky G, Larouche P, Belanger S, Horne E, Chin M, Remer LA, Kahn RA, Reid JS, Schulz M, Heald CL, Zhang J, Lapina K, Kleidman RG, Griesfeller J, Gaitley BJ, Tan Q, Diehl TL (2011) Maritime aerosol network as a component of AERONET – first results and comparison with global aerosol models and satellite retrievals. Atmos Meas Tech 4:583–597. doi: 10.5194/amt-4-583-2011CrossRefGoogle Scholar
  289. Smirnov A, Sayer AM, Holben BN, Hsu NC, Sakerin SM, Macke A, Nelson NB, Courcoux Y, Smyth TJ, Croot P, Quinn PK, Sciare J, Gulev SK, Piketh S, Losno R, Kinne S, Radionov VF (2012) Effect of wind speed on aerosol optical depth over remote oceans, based on data from the Maritime Aerosol Network. Atmos Meas Tech 5:377–388. doi: 10.5194/amt-5-377-2012CrossRefGoogle Scholar
  290. Smith RC, Baker KS (1978) The bio-optical state of ocean waters and remote sensing. Limnol Oceanogr 23:247–259Google Scholar
  291. Smith MA, White M (1985) Observations on lakes near Mount St. Helens: phytoplankton. J Arch Hydrobiol 104:345–363Google Scholar
  292. Sofiev M, Soares J, Prank M, de Leeuw G, Kukkonen J (2011) A regional-to-global model of emission and transport of sea salt particles in the atmosphere. J Geophys Res 116:D21302. doi: 10.1029/2010JD014713CrossRefGoogle Scholar
  293. Soh L-K, Tsatsoulis C, Gineris D, Bertoia C (2004) ARKTOS: an intelligent system for SAR sea ice image classification. IEEE Trans Geosci Remote Sens 42:229–248Google Scholar
  294. Steinberg DK, Carlson CA, Bates NR, Johnson RJ, Michaels AF, Knap AH (2001) Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep-Sea Res II 48(8–9):1405–1447. doi: 10.1016/S0967-0645(00)00148-XCrossRefGoogle Scholar
  295. Steinhoff T, Friedrich T, Hartman SE, Oschlies A, Wallace DWR, Körtzinger A (2010) Estimating mixed layer nitrate in the North Atlantic Ocean. Biogeosciences 7:795–807Google Scholar
  296. Stewart DJ, Taylor CM, Reeves CE, McQuaid JB (2008) Biogenic nitrogen oxide emissions from soils: impact on NOx and ozone over west Africa during AMMA (African Monsoon Multidisciplinary Analysis): observational study. Atmos Chem Phys 8:2285–2297. doi: 10.5194/acp-8-2285-2008CrossRefGoogle Scholar
  297. Stramski D (1999) Refractive index of planktonic cells as a measure of cellular carbon and chlorophyll a content. Deep-Sea Res I 46:335–351Google Scholar
  298. Stramski D, Reynolds RA, Babin M, Kaczmarek S, Lewis MR, Röttgers R, Sciandra A, Stramska M, Twardowski MS, Claustre H (2008) Relationship between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans. Biogeosciences 5:171–201Google Scholar
  299. Takahashi T et al (2009) Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Res II 56(8–10):554–577. doi: 10.1016/j.dsr2.2008.12.009CrossRefGoogle Scholar
  300. Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Phil Trans R Soc A 365:2053–2075Google Scholar
  301. Telszewski M et al (2009) Estimating the monthly pCO2 distribution in the North Atlantic using a self-organizing neural network. Biogeosciences 6:1405–1421Google Scholar
  302. Textor C et al (2006) Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos Chem Phys 6:1777–1813Google Scholar
  303. Textor C et al (2007) The effect of harmonized emissions on aerosol properties in global models – an AeroCom experiment. Atmos Chem Phys 7:4489–4501Google Scholar
  304. Thomas H, Prowe F, Lima ID, Doney SC, Wanninkhof R, Greatbatch RJ, Schuster U, Corbière A (2008) Changes in the North Atlantic Oscillation influence CO2 uptake in the North Atlantic over the past 2 decades. Glob Biogeochem Cycles 22(4):1–13. doi: 10.1029/2007GB003167CrossRefGoogle Scholar
  305. Tie X, Guenther A, Holland E (2003) Biogenic methanol and its impacts on tropospheric oxidants. Geophys Res Lett 30:1881Google Scholar
  306. Toole DA, Siegel DA, Doney SC (2008) A light-driven, one-dimensional dimethylsulfide biogeochemical cycling model for the Sargasso Sea. J Geophys Res 113:G02009. doi: 10.1029/2007JG000426CrossRefGoogle Scholar
  307. Trapp JM, Millero FJ, Prospero JM (2010) Temporal variability of the elemental composition of African dust measured in trade wind aerosols at Barbados and Miami. Mar Chem 20:71–82Google Scholar
  308. Turi G, Lachkar Z, Gruber N (2013) Spatiotemporal variability of air-sea CO2 fluxes and pCO2 in the California current system: an eddy-resolving modeling study. J Geophys Res (in press)Google Scholar
  309. Turner SM, Harvey MJ, Law CS, Nightingale PD, Liss PS (2004) Iron-induced changes in oceanic sulfur biogeochemistry. Geophys Res Lett 31. doi: 10.1029/2004GL020296
  310. Uematsu M, Toratani M, Narita Y, Senga Y, Kimoto T (2004) Enhancement of primary productivity in the western North Pacific caused by the eruption of the Miyake-jima volcano. Geophys Res Lett 31:1–4Google Scholar
  311. Uitz J, Claustre H, Morel A, Hooker SB (2006) Vertical distribution of phytoplankton communities in open ocean: an assessment based on surface chlorophyll. J Geophys Res 111:CO8005. doi: 10.1029/2005JC003207CrossRefGoogle Scholar
  312. Valsala V, Maksyutov S (2010) Simulation and assimilation of global ocean pCO2 and air–sea CO2 fluxes using ship observations of surface ocean pCO2 in a simplified biogeochemical offline model. Tellus 62B:821–840. doi: 10.1111/j.1600-0889.2010.00495.xCrossRefGoogle Scholar
  313. Vogt R, Crutzen PJ, Sander R (1996) A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer. Nature 383:327–330Google Scholar
  314. von Glasow R, Sander R, Bott A, Crutzen PJ (2002a) Modeling halogen chemistry in the marine boundary layer – 1. Cloud-free MBL. J Geophys Res 107:4341. doi: 10.1029/2001JD000942CrossRefGoogle Scholar
  315. von Glasow R, Sander R, Bott A, Crutzen PJ (2002b) Modeling halogen chemistry in the marine boundary layer – 2. Interactions with sulfur and the cloud-covered MBL. J Geophys Res 107:4323Google Scholar
  316. von Glasow R, von Kuhlmann R, Lawrence MG, Platt U, Crutzen PJ (2004) Impact of reactive bromine chemistry in the troposphere. Atmos Chem Phys 4:2481–2497Google Scholar
  317. Vrekoussis M, Wittrock F, Richter A, Burrows JP (2009) Temporal and spatial variability of glyoxal as observed from space. Atmos Chem Phys 9:4485–4504Google Scholar
  318. Wagner T, Platt U (1998) Satellite mapping of enhanced BrO concentrations in the troposphere. Nature 395:486–490Google Scholar
  319. Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res 97(C5):7373–7382Google Scholar
  320. Wanninkhof R, McGillis WR (1999) A cubic relationship between air-sea CO2 gas exchange and wind speed. Geophys Res Lett 26:1889–1892Google Scholar
  321. Watson AJ, Robinson C, Robinson JE, Williams PJB, Fasham MJR (1991) Spatial variability in the sink for atmospheric carbon dioxide in the North Atlantic. Nature 350:50–53Google Scholar
  322. Watson AJ et al (2009) Tracking the variable North Atlantic sink for atmospheric CO2. Science 326(5958):1391–1393. doi: 10.1126/science.1177394CrossRefGoogle Scholar
  323. Weissman DE, Bourassa MA, Tongue J (2002) Effects of rain rate and wind magnitude on Sea Winds scatterometer wind speed errors. J Atmos Ocean Technol 19:738–746Google Scholar
  324. Whalley LK, Furneaux KL, Goddard A, Lee JD, Mahajan A, Oetjen H, Read KA, Kaaden N, Carpenter LJ, Lewis AC, Plane JMC, Saltzman ES, Wiedensohler A, Heard DE (2010) The chemistry of OH and HO2 radicals in the boundary layer over the tropical Atlantic Ocean. Atmos Chem Phys 10(4):1555–1576Google Scholar
  325. Whitney FA, Crawford DW, Yoshimura T (2005) The uptake and export of Si and N in HNLC waters of the NE Pacific. Deep-Sea Res II 52:1055–1067Google Scholar
  326. Williams JE, Holzinger R, Gros V, Xu X, Atlas E, Wallace DWR (2004) Measurements of organic species in air and seawater from the tropical Atlantic. Geophys Res Lett 31:L23S06Google Scholar
  327. Williams JC, Drummond BA, Buxton RT (2010) Initial effects of the August 2008 volcanic eruption on breeding birds and marine mammals at Kasatochi Island, Alaska. Arct Antarct Alp Res 42:306–314Google Scholar
  328. Wingenter OW, Elliott SM, Blake DR (2007) New directions: enhancing the natural sulfur cycle to slow global warming. Atmos Environ. doi: 10.1016/j.atmosenv.2007.07.021CrossRefGoogle Scholar
  329. Wong CS, Matear RJ (1999) Sporadic silicate limitation of phytoplankton productivity in the subarctic NE Pacific. Deep-Sea Res II 46:2539–2555Google Scholar
  330. Woolf DK, Bowyer PA, Monahan EC (1987) Discriminating between the film drops and jet drops produced by a simulated whitecap. J Geophys Res 92:5142–5150Google Scholar
  331. Wunsch C, Heimbach P (2007) Practical global oceanic state estimation. Physica D 230:197–208. doi: 10.1016/j.physd.2006.09.040CrossRefGoogle Scholar
  332. Yassaa N, Peeken I, Zöllner E, Bluhm K, Arnold S, Spracklen D, Williams J (2008) Evidence for marine production of monoterpenes. Environ Chem 5:391–401. doi: 10.1071/EN08047CrossRefGoogle Scholar
  333. Young RW, Carder KL, Betzer PR, Costello DK, Duce RA, DiTuio GR, Tindale NW, Laws EA, Uematsu M, Merril JT, Feely RA (1991) Atmospheric iron inputs and primary productivity: phytoplankton responses in the North Pacific. Glob Biogeochem Cycles 5:119–134Google Scholar
  334. Ziska F, Quack B, Abrahamsson K, Archer SD, Atlas E, Bell T, Butler JH, Carpenter LJ, Jones CE, Harris NRP, Hepach H, Heumann KG, Hughes C, Kuss J, Krüger K, Liss P, Moore RM, Orlikowska A, Raimund S, Reeves CE, Reifenhaeuser W, Robinson AD, Schall C, Tanhua T, Tegtmeier S, Turner S, Wang L, Wallace D, Williams J, Yamamoto H, Yvon-Lewis S, Yokouchi Y (2013) Global sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide. Atmos. Chem. Phys. Discuss., 13:5601–5648, 2013 www.atmos-chem-phys-discuss.net/13/5601/2013/ doi: 10.5194/acpd-13-5601-2013Google Scholar

Copyright information

© The Author(s) 2014

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Véronique C. Garçon
    • 1
  • Thomas G. Bell
    • 2
    • 3
    • 4
  • Douglas Wallace
    • 5
  • Steve R. Arnold
    • 6
  • Alex Baker
    • 4
  • Dorothee C. E. Bakker
    • 4
  • Hermann W. Bange
    • 7
  • Nicholas R. Bates
    • 8
  • Laurent Bopp
    • 9
  • Jacqueline Boutin
    • 10
  • Philip W. Boyd
    • 11
  • Astrid Bracher
    • 12
  • John P. Burrows
    • 13
  • Lucy J. Carpenter
    • 14
  • Gerrit de Leeuw
    • 15
    • 16
    • 17
  • Katja Fennel
    • 5
  • Jordi Font
    • 18
  • Tobias Friedrich
    • 19
  • Christoph S. Garbe
    • 20
  • Nicolas Gruber
    • 21
  • Lyatt Jaeglé
    • 22
  • Arancha Lana
    • 23
  • James D. Lee
    • 24
  • Peter S. Liss
    • 4
    • 25
  • Lisa A. Miller
    • 26
  • Nazli Olgun
    • 7
  • Are Olsen
    • 27
  • Benjamin Pfeil
    • 28
  • Birgit Quack
    • 7
  • Katie A. Read
    • 29
  • Nicolas Reul
    • 30
  • Christian Rödenbeck
    • 31
  • Shital S. Rohekar
    • 4
  • Alfonso Saiz-Lopez
    • 32
  • Eric S. Saltzman
    • 33
  • Oliver Schneising
    • 13
  • Ute Schuster
    • 34
  • Roland Seferian
    • 35
  • Tobias Steinhoff
    • 7
  • Pierre-Yves Le Traon
    • 36
  • Franziska Ziska
    • 7
  1. 1.LEGOS, Centre National de la Recherche ScientifiqueToulouse, Cedex 9France
  2. 2.Plymouth Marine LaboratoryPlymouthUK
  3. 3.Department of Earth System ScienceUniversity of CaliforniaIrvineUSA
  4. 4.Centre for Ocean and Atmospheric Sciences, School of Environmental SciencesUniversity of East AngliaNorwichUK
  5. 5.Department of OceanographyDalhousie UniversityHalifaxCanada
  6. 6.School of Earth & Environment, Institute for Climate and Atmospheric ScienceUniversity of LeedsLeedsUK
  7. 7.GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
  8. 8.Bermuda Institute of Ocean SciencesSt George’sBermuda
  9. 9.Centre National de la Recherche Scientifique (CNRS)Laboratoire des Sciences du Climat et l’Environnement (LSCE)Gif sur YvetteFrance
  10. 10.LOCEAN/CNRS/UPMC/IRDUniversité Pierre et Marie CurieParis Cedex O5France
  11. 11.Institute for Marine and Antarctic ScienceUniversity of TasmaniaHobartAustralia
  12. 12.Alfred-Wegener-Institute for Polar & Marine Research, Bremerhaven and Institute of Environmental PhysicsUniversity of BremenBremenGermany
  13. 13.Institute of Environmental Physics and Remote SensingUniversity of BremenBremenGermany
  14. 14.Department of ChemistryUniversity of YorkYorkUK
  15. 15.Climate Change UnitFinnish Meteorological InstituteHelsinkiFinland
  16. 16.Department of PhysicsUniversity of HelsinkiHelsinkiFinland
  17. 17.TNOUtrechtThe Netherlands
  18. 18.Department of Physical OceanographyInstitut de Ciènces del Mar-CSICBarcelonaSpain
  19. 19.School of Ocean and Earth Science and TechnologyUniversity of HawaiHonoluluUSA
  20. 20.IWR, University of HeidelbergHeidelbergGermany
  21. 21.Institute of Biogeochemistry and Pollutant DynamicsETH ZürichZürichSwitzerland
  22. 22.Department of Atmospheric SciencesUniversity of WashingtonSeattleUSA
  23. 23.Department of Marine Technologies, Operational Oceanography and SustainabilityIMEDEA-CSICBalearic IslandsSpain
  24. 24.Department of ChemistryUniversity of YorkYorkUK
  25. 25.Department of OceanographyTexas A & M UniversityCollege StationUSA
  26. 26.Institute of Ocean Sciences, Fisheries and Oceans CanadaSidneyCanada
  27. 27.Geophysical Institute and Bjerknes Centre for Climate ResearchUniversity of BergenBergenNorway
  28. 28.University of Bergen/Bjerknes Centre for Climate ResearchBergenNorway
  29. 29.National Centre of Atmospheric Science (NCAS)University of YorkYorkUK
  30. 30.IFREMER, Laboratoire d’Océanographie SpatialeCentreMéditerraneé, Zone Portuaire de BrégaillonLa Seyne-sur-Mer CedexFrance
  31. 31.Max Planck Institute for BiogeochemistryJenaGermany
  32. 32.Institute of Physical Chemistry Rocasolano - CSICMadridSpain
  33. 33.Department of Earth System ScienceUniversity of CaliforniaIrvineUSA
  34. 34.College of Life and Environmental SciencesUniversity of Exeter, Hatherly LaboratoriesExeterUK
  35. 35.CNRM-GAME/GMGEC/ASTER & IPSL/LSCEToulouseFrance
  36. 36.IFREMER and Mercator OceanToulouseFrance

Personalised recommendations