Advertisement

Transfer Across the Air-Sea Interface

  • Christoph S. Garbe
  • Anna Rutgersson
  • Jacqueline Boutin
  • Gerrit de Leeuw
  • Bruno Delille
  • Christopher W. Fairall
  • Nicolas Gruber
  • Jeffrey Hare
  • David T. Ho
  • Martin T. Johnson
  • Philip D. Nightingale
  • Heidi Pettersson
  • Jacek Piskozub
  • Erik Sahlée
  • Wu-ting Tsai
  • Brian Ward
  • David K. Woolf
  • Christopher J. Zappa
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)

Abstract

The efficiency of transfer of gases and particles across the air-sea interface is controlled by several physical, biological and chemical processes in the atmosphere and water which are described here (including waves, large- and small-scale turbulence, bubbles, sea spray, rain and surface films). For a deeper understanding of relevant transport mechanisms, several models have been developed, ranging from conceptual models to numerical models. Most frequently the transfer is described by various functional dependencies of the wind speed, but more detailed descriptions need additional information. The study of gas transfer mechanisms uses a variety of experimental methods ranging from laboratory studies to carbon budgets, mass balance methods, micrometeorological techniques and thermographic techniques. Different methods resolve the transfer at different scales of time and space; this is important to take into account when comparing different results. Air-sea transfer is relevant in a wide range of applications, for example, local and regional fluxes, global models, remote sensing and computations of global inventories. The sensitivity of global models to the description of transfer velocity is limited; it is however likely that the formulations are more important when the resolution increases and other processes in models are improved. For global flux estimates using inventories or remote sensing products the accuracy of the transfer formulation as well as the accuracy of the wind field is crucial.

Keywords

Wind Speed Coloured Dissolve Organic Matter Transfer Velocity Dual Tracer Moderate Wind Speed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adrian R (1991) Particle-imaging techniques for experimental fluid mechanics. Annu Rev Fluid Mech 23:261–304Google Scholar
  2. Adrian R (2005) Twenty years of particle image velocimetry. Exp Fluids 39(2):159–169. doi: 10.1007/s00348-005-0991-7CrossRefGoogle Scholar
  3. Agrawal Y, Terray E, Donelan M, Hwang P, Williams AJ III, Drennan W, Kahma K, Kitaigorodskii S (1992) High dissipation beneath surface waves due to breaking. Nature 359:219–220. doi: 10.1038/359219a0CrossRefGoogle Scholar
  4. Anctil F, Donelan M, Drennan W, Graber H (1994) Eddy-correlation measurements of air-sea fluxes from a discus buoy. J Atmos Ocean Technol 11:1144–1150Google Scholar
  5. Andreas E (1992) Sea spray and the turbulent air–sea heat fluxes. J Geophys Res 97:11429–11441Google Scholar
  6. Andreas EL, Jones KF, Fairall CW (2010) Production velocity of sea spray droplets. J Geophys Res 115(C12):C12065. doi: 10.1029/2010JC006458CrossRefGoogle Scholar
  7. Anis A, Moum J (1995) Surface wave-turbulence interactions: scaling ε(z) near the sea surface. J Phys Oceanogr 25:2025–2045Google Scholar
  8. Asher W (1997) The sea-surface microlayer and its effect on global air-sea gas transfer. In: Liss PS, Duce RA (eds) The sea surface and global change. Cambridge University Press, Cambridge, pp 251–285Google Scholar
  9. Asher WE (2009) The effects of experimental uncertainty in parameterizing air-sea gas exchange using tracer experiment data. Atmos Chem Phys 9(1):131–139Google Scholar
  10. Asher WE, Pankow JF (1986) The interaction of mechanically generated turbulence and interfacial films with a liquid phase controlled gas/liquid transport process. Tellus 38B:305–318Google Scholar
  11. Asher W, Wanninkhof R (1998) The effect of bubble-mediated gas transfer on purposeful dual-gaseous tracer experiments. J Geophys Res 103. doi: 10.1029/98JC00245Google Scholar
  12. Asher W, Karle L, Higgins B, Farley P (1996) The influence of bubble plumes on air-seawater gas transfer velocities. J Geophys Res 101:12027–12041Google Scholar
  13. Asher WE, Jessup AT, Atmane MA (2004) On the use of the active controlled flux technique for in situ measurement oh the air–sea transfer velocity of heat and gas. J Geophys Res 109:C08S14. doi: 10.1029/2003JC001805CrossRefGoogle Scholar
  14. Assur A (1958) Composition of sea ice and its tensile strength. In: Arctic sea ice, vol 598, Publication. National Academy of Sciences-National Research Council, Washington, DC, pp 106–138Google Scholar
  15. Atlas R, Hoffman R, Ardizzone J, Leidner S, Jusem J, Smith D, Gombos D (2011) A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull Am Meteorol Soc 92:157–174. doi: 10.1175/2010BAMS2946.1CrossRefGoogle Scholar
  16. Atmane MA, Asher W, Jessup AT (2004) On the use of the active infrared technique to infer heat and gas transfer velocities at the air-water interface. J Geophys Res 109:C08S14Google Scholar
  17. Babanin A (2006) On a wave-induced turbulence and a wave-mixed upper ocean layer. Geophys Res Lett 33:L20605. doi: 10.1029/2006GL027308CrossRefGoogle Scholar
  18. Babanin AV, Haus BK (2009) On the existence of water turbulence induced by nonbreaking surface waves. J Phys Oceanogr 39(10):2675–2679Google Scholar
  19. Babanin AV, Ganopolski A, Phillips WR (2009) Wave-induced upper-ocean mixing in a climate model of intermediate complexity. Ocean Model 29(3):189–197. doi: 10.1016/j.ocemod.2009.04.003CrossRefGoogle Scholar
  20. Banks RB, Herrera FF (1977) Effect of wind and rain on surface reaeration. J Environ Eng 103:489–504Google Scholar
  21. Banks RB, Wickramanayake GB, Lohani BN (1984) Effect of rain on surface reaeration. J Environ Eng 110:1–14Google Scholar
  22. Banner ML (1990) The influence of wave breaking on the surface pressure distribution in wind-wave interactions. J Fluid Mech 211:463–495Google Scholar
  23. Banner M, Peirson W (1998) Tangential stress beneath wind-driven air-water interfaces. J Fluid Mech 364:115–145Google Scholar
  24. Banner ML, Phillips OM (1974) On the incipient breaking of small-scale waves. J Fluid Mech 65:647–656Google Scholar
  25. Banner ML, Jones ISF, Trinder JC (1989) Wavenumber spectra of short gravity waves. J Fluid Mech 198:321–344Google Scholar
  26. Bariteau L, Hueber J, Lang K, Helmig D, Fairall CW, Hare JE (2010) Ozone deposition velocity by ship-based eddy correlation flux measurements. Atmos Meas Tech 3:441–455. doi: 10.5194/amt-3-441-2010CrossRefGoogle Scholar
  27. Bates N, Mathis J (2009) The arctic ocean marine carbon cycle: evaluation of air-sea co2 exchanges, ocean acidification impacts and potential feedbacks. Biogeosciences 6:2433–2459Google Scholar
  28. Belanger TV, Korzun EA (1990) Rainfall-reaeration effects. J Irrig Drain 116:582–587. doi: 10.1061/(asce)0733-9437(1990)116:4(582)CrossRefGoogle Scholar
  29. Belanger TV, Korzun EA (1991) Rainfall-reaeration effects. In: Wilhelms SC, Gulliver JS (eds) Air-water mass transfer. ASCE, New York, pp 388–399Google Scholar
  30. Belcher SE, Grant ALM, Hanley KE, Fox-Kemper B, Van Roekel L, Sullivan PP, Large WG, Brown A, Hines A, Calvert D, Rutgersson A, Pettersson H, Bidlot J-R, Janssen PAEM, Polton JA (2012) A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys Res Lett 39(18):L18605. doi: 10.1029/2012GL052932CrossRefGoogle Scholar
  31. Beljaars ACM (1995) The parameterization of surface fluxes in large-scale models under free convection. Q J R Meteorl Soc 121:255–270Google Scholar
  32. Bender ML, Kinter S, Cassar N, Wanninkhof R (2011) Evaluating gas transfer velocity parameterizations using upper ocean radon distributions. J Geophys Res 116(C2):C02010. doi: 10.1029/2009JC005805CrossRefGoogle Scholar
  33. Berthe A, Kondermann D, Christensen C, Goubergrits L, Garbe C, Affeld K, Kertzscher U (2010) Three-dimensional, three-component wall-PIV. Exp Fluids 48(6):983–997. doi: 10.1007/s00348-009-0777-4CrossRefGoogle Scholar
  34. Blanchard D (1963) The electrification of the atmosphere by particles from bubbles in the sea. Prog Oceanogr 1:71–202Google Scholar
  35. Blomquist BW, Fairall CW, Huebert B, Kleiber DJ (2006) Dms sea-air transfer velocity: direct measurements by eddy covariance and parameterization based on the NOAA/COARE gas transfer model. Geophys Res Lett 33(7):L07601. doi: 10.1029/2006GL025735CrossRefGoogle Scholar
  36. Bock EJ, Hara T, Frew NM, McGillis WR (1999) Relationship between air-sea gas transfer and short wind waves. J Geophys Res Ocean 104(C11):25821–25831, j NOV 15Google Scholar
  37. Bortkovskii R, Novak V (1993) Statistical dependencies of sea state characteristics on water temperature and wind-wave age. J Mar Syst 4:161–169Google Scholar
  38. Bourassa M, Stoffelen A, Bonekamp H, Chang P, Chelton D, Courtney J, Edson R, Figa J, He Y, Hersbach H, Hilburn K, Jelenak Z, Kelly K, Knabb R, Lee T, Lindstrom E, Liu W, Long D, Perrie W, Portabella M, Powell M, Rodriguez E, Smith D, Swail V, Wentz F (2010) Remotely sensed winds and wind stresses for marine forecasting and ocean modeling. In: Hall J, Harrison D, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 2. ESA Publication WPP-306, Venice, 21–25 Sept 2009. doi: 10.5270/OceanObs09.cwp.08
  39. Boutin J, Etcheto J (1995) Estimating the chemical enhancement effect on the air-sea CO2 exchange using the ERS1 scatterometer wind speeds. In: Monahan EC (ed) Air-water gas transfer. AEON Verlag & Studio, Hanau, pp 827–841Google Scholar
  40. Boutin J, Quilfen Y, Merlivat L, Piolle J (2009) Global average of air-sea CO2 transfer velocity from QuikSCAT scatterometer wind speeds. J Geophys Res 114:C04007. doi: 10.1029/2007JC004168CrossRefGoogle Scholar
  41. Broecker W, Maier-Reimer E (1992) The influence of air and sea exchange on the carbon isotope distribution in the sea. Global Biogeochem Cycles 6:315–320. doi: 10.1029/92GB01672CrossRefGoogle Scholar
  42. Broecker WS, Peng TH (1974) Gas exchange rates between air and sea. Tellus 26:21–35. doi: 10.1111/j.2153-3490.1974.tb01948.xCrossRefGoogle Scholar
  43. Broecker HC, Petermann J, Siems W (1978) The influence of wind on co2 exchange in a wind wave tunnel, including the effects of monolayers. J Mar Res 36:595–610Google Scholar
  44. Broecker WS, Peng T-H, Ostlund G, Stuiver M (1985) The distribution of bomb radiocarbon in the ocean. J Geophys Res 90:6953–6970. doi: 10.1029/JC090iC04p06953CrossRefGoogle Scholar
  45. Broecker WS, Ledwell JR, Takahashi T, Weiss R, Merlivat L, Memery L, Jähne B, Münnich KO (1986) Isotopic versus micrometeorologic ocean CO2 fluxes: a serious conflict. J Geophys Res 91(C9):10517–10528. doi: 10.1029/JC091iC09p10517CrossRefGoogle Scholar
  46. Brücker C (1995) Digital-particle-image-velocimetry (dpiv) in a scanning light-sheet: 3D starting flow around a short cylinder. Exp Fluids 19:255–263Google Scholar
  47. Brücker C (1996) 3D PIV via spatial correlation in a color-coded light-sheet. Exp Fluids 21:312–314Google Scholar
  48. Brumley BH, Jirka GH (1988) Air-water transfer of slightly soluble gases: turbulence, interfacial processes and conceptual models. Physicochem Hydrodyn 10:295–319Google Scholar
  49. Budzianowski W, Koziol A (2005) Stripping of ammonia from aqueous solutions in the presence of carbon dioxide: effect of negative enhancement of mass transfer. Trans ICHemE Part A Chem Eng Res Des 83:196–204. doi: 10.1205/cherd.03289CrossRefGoogle Scholar
  50. Burba G, McDermitt D, Grelle A, Anderson D, Xu L (2008) Addressing the influence of instrument surface heat exchange on the measurements of co2 flux from open-path gas analyzers. Glob Chang Biol 14:1854–1876Google Scholar
  51. Burgmann S, Dannemann J, Schröder W (2008) Time-resolved and volumetric piv measurements of a transitional separation bubble on an sd7003 airfoil. Exp Fluids 44:609–622. doi: 10.1007/s00348-007-0421-0CrossRefGoogle Scholar
  52. Businger J, Oncley S (1990) Flux measurement with conditional sampling. J Atmos Ocean Technol 7:349–352Google Scholar
  53. Callaghan A, White M (2009) Automated processing of sea surface images for the determination of whitecap coverage. J Atmos Ocean Technol 26:384–394Google Scholar
  54. Carlsson B, Rutgersson A, Smedman A (2009) Impact of swell on simulations using a regional atmospheric climate model. Tellus 61A:527–538Google Scholar
  55. Carruthers DJ, Choularton TW (1986) The microstructure of hill cap clouds. Q J R Meteorol Soc 112:113–129Google Scholar
  56. Cenedese A, Paglialunga A (1989) A new technique for the determination of the third velocity component with piv. Exp Fluids 8:228–230. doi: 10.1007/BF00195799CrossRefGoogle Scholar
  57. Charnock H (1955) Wind stress on a water surface. Q J R Meteorol Soc 81:639–640Google Scholar
  58. Chernyshenko SI, Baig MF (2005) The mechanism of streak formation in near-wall turbulence. J Fluid Mech 544:99–131. doi: 10.1017/S0022112005006506CrossRefGoogle Scholar
  59. Coantic M (1986) A model of gas transfer across air–water interfaces with capillary waves. J Geophys Res 91:3925–3943. doi: 10.1029/JC091iC03p03925CrossRefGoogle Scholar
  60. Csanady GT (1990) The role of breaking wavelets in air-sea gas transfer. J Geophys Res 95(C1):749–759Google Scholar
  61. Csanady G (1997) The “slip law” of the free surface. J Oceanogr 53:67–80Google Scholar
  62. Cunliffe M, Whitely A, Schafer H, Newbold L (2009) Comparison of bacterioneuston and bacterioplankton dynamics during a phytoplankton bloom in the a fjord microcosm. Appl Environ Microbiol 75:7173–7181Google Scholar
  63. D’Asaro E, McNeil C (2007) Air–sea gas exchange at extreme wind speeds measured by autonomous oceanographic floats. J Mar Syst 66(1–4):92–109. doi: 10.1016/j.jmarsys.2006.06.007CrossRefGoogle Scholar
  64. Danckwerts PV (1951) Significance of a liquid-film coefficients in gas absorption. Ind Eng Chem 43:1460–1467. doi: 10.1021/ie50498a055CrossRefGoogle Scholar
  65. Davies JT (1972) Turbulence phenomena. An introduction to the eddy transfer of momentum, mass, and heat, particularly at interfaces. Academic, New YorkGoogle Scholar
  66. de Leeuw G, Andreas EL, Anguelova MD, Fairall CW, Lewis ER, O’Dowd C, Schulz M, Schwartz SE (2011) Production flux of sea spray aerosol. Rev Geophys 49:RG2001. doi: 10.1029/2010RG000349CrossRefGoogle Scholar
  67. de Leeuw G, Guieu C, Arneth A, Bellouin N, Bopp L, Boyd P, Denier van de Gon HAC, Desboeufs K, Dulac F, Facchini C, Gantt B, Langmann B, Mahowald N, Maranon E, O’Dowd C, Olgun N, Pulido-Villena E, Rinaldi M, Stephanou E, Wagener T (2013) Ocean–atmosphere interactions of particles. In: Liss P, Johnson M (eds) Ocean–atmosphere interactions of gases and particles. Springer, this volumeGoogle Scholar
  68. Deacon EL (1977) Gas transfer to and across an air-water interface. Tellus 29:363–374. doi: 10.1111/j.2153-3490.1977.tb00746.xCrossRefGoogle Scholar
  69. Deardorff JW (1970) Convective velocity and temperature scales for the unstable planetary boundary layer and for rayleigh convection. J Atmos Sci 27(8):1211–1213. doi: 10.1175/1520-0469(1970)027<1211:CVATSF>2.0.CO;2CrossRefGoogle Scholar
  70. Delille B, Tilbrook B, Lannuzel D, Schoemann V, Borges A, Lancelot C, Chou L, Dieckmann G, Tison J (2006) Air – sea ice exchange of carbon dioxide: the end of a long-lived paradigm? Science SubmittedGoogle Scholar
  71. Delille B, Jourdain B, Borges A, Tison J, Delille D (2007) Biogas (CO2, O2, dimethylsulfide) dynamics in spring Antarctic fast ice. Limnol Oceanogr 52:1367–1379Google Scholar
  72. Department of Scientific and Industrial Research (1964) Effects of polluting discharges on the thames estuary: the reports of the Thames Survey Committee and of the Water Pollution, Research Laboratory. Her Majesty’s Stationery Office, London, p 609Google Scholar
  73. Desjardins R (1977) Description and evaluation of a sensible heat flux detector. Bound-Lay Meteorol 11:147–154Google Scholar
  74. Dieckmann G, Nehrke G, Papadimitriou S, Göttlicher J, Steininger R, Kennedy H, Wolf-Gladrow D, Thomas D (2008) Calcium carbonate as ikaite crystals in Antarctic sea ice. Geophys Res Lett 35:L08501Google Scholar
  75. Dieckmann G, Nehrke G, Uhlig C, Göttlicher J, Gerland S, Granskog M, Thomas D (2010) Ikaite (CaCO3*6H2O) discovered in Arctic sea ice. Cryosphere Discuss 4:153–161Google Scholar
  76. Dinkelacker F, Schäfer M, Ketterle W, Wolfrum J, Stolz W, Köhler J (1992) Determination of the third velocity component with PTA using an intensity graded light sheet. Exp Fluids 13:357–359. doi: 10.1007/BF00209511CrossRefGoogle Scholar
  77. Donelan MA (2001) A nonlinear dissipation function due to wave breaking. In: ECMWF workshop on ocean wave forecasting, The European Centre for Medium-Range Weather Forecasts, pp 87–94Google Scholar
  78. Donelan M, Drennan W, Katsaros K (1997) The air-sea momentum flux in conditions of wind sea and swell. J Phys Oceanogr 27:2087–2099Google Scholar
  79. Drennan W, Donelan M, Terray E, Katsaros K (1996) Oceanic turbulence dissipation measurements in SWADE. J Phys Oceanogr 26:808–815. doi: 10.1175/1520-0485(1996)026<0808:OTDMIS>2.0.CO;2CrossRefGoogle Scholar
  80. Drennan W, Kahma K, Donelan M (1999) On momentum flux and velocity spectra over waves. Bound Lay Meteorol 92:489–515Google Scholar
  81. Drennan W, Graber H, Hauser D, Quentin C (2003) On the wave age dependence of wind stress over pure wind seas. J Geophys Res 108. doi: 10.1029/2000JC000715
  82. Drennan W, Taylor P, Yelland M (2005) Parameterizing the sea surface roughness. J Phys Oceanogr 35:835–848Google Scholar
  83. Duce RA, Tindale NW (1991) Atmospheric transport of iron and its deposition in the ocean. Limnol Oceanogr 36:1715–1726Google Scholar
  84. Edson J, Hinton A, Prada K, Hare J, Fairall C (1998) Direct covari-ance measurements from mobile platforms at sea. J Atmos Ocean Technol 15:547–562Google Scholar
  85. Edson J, Zappa C, Ware J, McGillis W, Hare J (2004) Scalar flux profile relationships over the open ocean. J Geophys Res 109:C08S09. doi: 10.1029/2003JC001960CrossRefGoogle Scholar
  86. Edson J, Fairall C, Bariteau L, Helmig D, Zappa C, Cifuentes-Lorenzen A, McGillis W, Pezoa S, Hare J (2011) Direct covariance measurement of CO2 gas transfer velocity during the 2008 Southern Ocean Gas Exchange Experiment: wind speed dependency. J Geophys Res. doi: 10.1029/2011JC007022 (in press)
  87. Elsinga GE, Scarano F, Wieneke B (2006) Tomographic particle image velocimetry. Exp Fluids 41:933–947Google Scholar
  88. Emerson S, Quay P, Stump C, Wilbur D, Knox M (1991) O2, ar, n2, and 222rn in surface waters of the subarctic Ocean: net biological o2 production. Global Biogeochem Cycles 5(1):49–69. doi: 10.1029/90GB02656CrossRefGoogle Scholar
  89. Eugster W, Kling G, Jonas T, McFadden J, Wuest A, MacIntyre S, Chapin F (2003) CO2 exchange between air and water in an Arctic Alaskan and midlatitude Swiss lake: importance of convective mixing. J Geophys Res 108(D12):4362. doi: 10.1029/2002JD002653CrossRefGoogle Scholar
  90. Fairall C, Bradley E, Rogers D, Edson J, Young G (1996) Bulk parameterization of air-sea fluxes for TOGA COARE. J Geophys Res 101:3747–3764Google Scholar
  91. Fairall C, Hare J, Edson J, McGillis W (2000) Parameterization and micrometeorological measurements of air-sea gas transfer. Bound-Lay Meteorol 96:63–105. doi: 10.1023/A:1002662826020CrossRefGoogle Scholar
  92. Fairall C, Bradley E, Hare J, Grachev A, Edson J (2003) Bulk parameterization of air-sea fluxes: updates and verification for the coare algorithm. J Climate 16:571–591Google Scholar
  93. Fairall CW, Hare JE, Helmig D, Ganzveld L (2007) Water-side turbulence enhancement of ozone deposition to the ocean. Atmos Chem Phys 7:443–451. doi: 10.5194/acp-7-443-2007CrossRefGoogle Scholar
  94. Fairall C, Yang M, Bariteau L, Edson J, Helmig D, McGillis W, Pezoa S, Hare J, Huebert B, Blomquist B (2011) Implementation of the coupled ocean–atmosphere response experiment flux algorithm with CO2, dimethyl sulfide, and O3. J Geophys Res 116:C00F09. doi: 10.1029/2010JC006884CrossRefGoogle Scholar
  95. Fangohr S, Woolf D, Jeffery C, Robinson I (2008) Calculating long-term global air-sea flux of carbon dioxide using scatterometer, passive microwave, and model reanalysis wind data. J Geophys Res 113:C09032. doi: 10.1029/2005JC003376CrossRefGoogle Scholar
  96. Fortescue GE, Pearson JRA (1967) On gas absorption into a turbulent liquid. Chem Eng Sci 22:1163–1176Google Scholar
  97. Frew N (1997) The role of organic films in air-sea gas exchange. In: Liss PS, Duce RA (eds) The sea surface and global change. Cambridge University Press, Cambridge, pp 121–172Google Scholar
  98. Frew N, Goldman J, Dennett M, Johnson A (1990) Impact of phytoplankton-generated surfactants on airsea gas-exchange. J Geophys Res 95:3337–3352Google Scholar
  99. Frew N, Bock E, Schimpf U, Hara T, Haussecker H, Edson J, McGillis W, Nelson R, McKenna S, Uz B, Jähne B (2004) Air-sea gas transfer: its dependence on wind stress, small-scale roughness, and surface films. J Geophys Res Ocean C08S17:17. doi: 10.1029/2003JC002131CrossRefGoogle Scholar
  100. Frew N, Glover D, Bock E, McCue S (2007) A new approach to estimation of global air-sea gas transfer velocity fields using dual-frequency altimeter backscatter. J Geophys Res 112:C11003. doi: 10.1029/2006JC003819CrossRefGoogle Scholar
  101. Fulgosi M, Lakehal D, Banerjee S, Angelis VD (2003) Direct numerical simulation of turbulence in a sheared air–water flow with a deformable interface. J Fluid Mech 482:319–345Google Scholar
  102. Garabetian F (1991) 14 c-glucose uptake and 14 C-CO2 production in surface microlayer and surface water samples: influence of uv and visible radiation. Mar Ecol Prog Ser 77:21–26Google Scholar
  103. Garbe C, Heinlein A (2011) Friction velocity from active thermography and shape analysis. In: Komori S, McGillis W, Kurose R (eds) Gas transfer at water surfaces 2010. Kyoto University Press, Kyoto, pp 535–543Google Scholar
  104. Garbe C, Spies H, Jähne B (2003) Estimation of surface flow and net heat flux from infrared image sequences. J Math Imaging Vis 19(3):159–174. doi: 10.1023/A:1026233919766CrossRefGoogle Scholar
  105. Garbe CS, Schimpf U, Jähne B (2004) A surface renewal model to analyze infrared image sequences of the ocean surface for the study of air-sea heat and gas exchange. J Geophys Res 109:C08S15. doi: 10.1029/2003JC001802CrossRefGoogle Scholar
  106. Garbe C, Degreif K, Jähne B (2007) Estimating the viscous shear stress at the water surface from active thermography. In: Garbe C, Handler RA, Jähne B (eds) Transport at the air sea interface – measurements, models and parametrizations. Springer, Berlin, pp 223–239. doi: 10.1007/978-3-540-36906-6_16CrossRefGoogle Scholar
  107. Garbe C, Voss B, Stapf J (2012) Plenoptic particle streak velocimetry (ppsv): 3d3c fluid flow measurement from light fields with a single plenoptic camera. In: 16th international symposium on applications of laser techniques to fluid mechanics, Instituto Superior Técnico, Lisbon, pp 1–12Google Scholar
  108. Gargett AE, Wells JR (2007) Langmuir turbulence in shallow water. Part 1. Observations. J Fluid Mech 576:27–61Google Scholar
  109. Garland JA, Etzerman AW, Penkett SA (1980) The mechanism for dry deposition of ozone to seawater surfaces. J Geophys Res 85:7488–7492Google Scholar
  110. Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, CambridgeGoogle Scholar
  111. Glover D, Frew N, McCue S (2007) Air-sea gas transfer velocity estimates from the Jason-1 and TOPEX altimeters: prospects for a long-term global time series. J Mar Syst 66:173–181Google Scholar
  112. Glud R, Rysgaard S, Kuhl M (2002) A laboratory study on o-2 dynamics and photosynthesis in ice algal communities: quantification by microsensors, o-2 exchange rates, c-14 incubations and a pam fluorometer. Aquat Microb Ecol 27:301–311Google Scholar
  113. Goddijn-Murphy L, Woolf D, Callaghan A (2011) Parameterizations and algorithms for oceanic whitecap coverage. J Phys Oceanogr 41:742–756. doi: 10.1175/2010JPO4533.1CrossRefGoogle Scholar
  114. Godfrey J, Beljaars A (1991) On the turbulent fluxes of buoyancy, heat and moisture at the air-sea interface at low wind speeds. J Geophys Res 96:22043–22048Google Scholar
  115. Golden K (2003) Critical behavior of transport in sea ice. Phys B Condens Matter 338:274–283Google Scholar
  116. Golden K, Ackley S, Lytle V (1998) The percolation phase transition in sea ice. Science 282:2238–2241Google Scholar
  117. Goldman J, Dennett M, Frew N (1988) Surfactant effects on air sea gas-exchange under turbulent conditions. Deep-Sea Res 35:1953–1970Google Scholar
  118. Gosink T, Pearson J, Kelley J (1976) Gas movement through sea ice. Nature 263:41–42Google Scholar
  119. Grassl H (1976) The dependence of the measured cool skin of the ocean on wind stress and total heat flux. Bound-Lay Meteorol 10:465–474Google Scholar
  120. Graven H, Gruber N, Key RF, Khatiwala S (2012) Changing controls on oceanic radiocarbon: new insights on shallow-to-deep ocean exchange and anthropogenic CO2 uptake. J Geophys Res 117:C10005Google Scholar
  121. Guo LX, Smedman A-S, Högström U (2004) Air-sea exchange of sensible heat over the baltic sea. Q J R Meteorol Soc 130:519–539Google Scholar
  122. Hamme RC, Severinghaus JP (2007) Trace gas disequilibria during deep-water formation. Deep Sea Res Part I 54:939–950. doi: 10.1016/j.dsr.2007.03.008CrossRefGoogle Scholar
  123. Handler RA, Smith GB (2011) Statistics of the temperature and its derivatives at the surface of a wind-driven air-water interface. J Geophys Res 116(C6):C06021. doi: 10.1029/2010JC006496CrossRefGoogle Scholar
  124. Handler RA, Smith GB, Leighton RI (2001) The thermal structure of an air–water interface at low wind speeds. Tellus 53(A):233–244Google Scholar
  125. Hara T, VanInwegen E, Wendelbo J, Garbe CS, Schimpf U, Jähne B, Frew N (2007) Estimation of air-sea gas and heat fluxes from infrared imagery based on near surface turbulence models. In: Garbe CS, Handler RA, Jähne B (eds) Transport at the air sea interface – measurements, models and parameterizations. Springer, Berlin. doi: 10.1007/978-3-540-36906-6_17CrossRefGoogle Scholar
  126. Hare J, Fairall C, McGillis W, Edson J, Ward B, Wanninkhof R (2004) Evaluation of the NOAA/COARE air-sea gas transfer parameterization using GasEx data. J Geophys Res 109:C08S02. doi: 10.1029/2003/C002256CrossRefGoogle Scholar
  127. Harriott P (1962) A random eddy modification of the penetration theory. Chem Eng Sci 17:149–154Google Scholar
  128. Harrison EL, Veron F, Ho DT, Reid MC, Eggleston SS, Orton P, McGillis WR (2012) Nonlinear interaction between rain and wind induced air-water gas exchange. J Geophys Res 117:C03034Google Scholar
  129. Hasse L, Liss P (1980) Gas exchange across the air-sea interface. Tellus 32:470–481. doi: 10.1111/j.2153-3490.1980.tb00974.xCrossRefGoogle Scholar
  130. Haugen D (1978) Effects of sampling rates and averaging periods on me-teorlogical measurements. In: Fourth Symp Meteorol Observ Instr, Am Meteorol Soc, pp 15–18Google Scholar
  131. Haußecker H, Jähne B (1995) In situ measurements of the air-sea gas transfer rate during the MBL/CoOP west coast experiment. In: Jähne B, Monahan EC (eds) Air-water gas transfer – selected papers from the third international symposium on air-water gas transfer. AEON Verlag & Studio, Hanau/Heidelberg, pp 775–784Google Scholar
  132. Heinesch B, Yernaux M, Aubinet M, Geilfus N, Papakyriakou T, Carnat G, Eicken H, Tison J, Delille B (2009) Measuring air-ice CO2 fluxes in the Arctic. FluxLetter Newsl FLUXNET 2:9–10Google Scholar
  133. Helmig D, Lang E, Bariteau L, Ganzeveld L, Fairall C, Hare J, Boylan P, Hueber J (2011) Atmosphere-ocean ozone fluxes during the TexAQS 2006, STRATUS 2006, GOMECC 2007, GasEX 2008, and AMMA 2008 cruises. J Geophys Res 117:D04305Google Scholar
  134. Hicks B (2005) A climatology of wet deposition scavenging ratios for the united states. Atmos Environ 39(9):1585–1596. doi: 10.1016/j.atmosenv.2004.10.039CrossRefGoogle Scholar
  135. Higbie R (1935) The rate of absorption of a pure gas into a still liquid during short periods of exposure. Trans Am Inst Chem Eng 31:365–389Google Scholar
  136. Hinsch KD (2002) Holographic particle image velocimetry. Meas Sci Technol 13:R61–R72Google Scholar
  137. Ho DT, Bliven LF, Wanninkhof R, Schlosser P (1997) The effect of rain on air-water gas exchange. Tellus 49:149–158Google Scholar
  138. Ho DT, Asher WE, Bliven LF, Schlosser P, Gordan EL (2000) On mechanisms of rain-induced air-water gas exchange. J Geophys Res 105:24045–24057Google Scholar
  139. Ho DT, Zappa CJ, McGillis WR, Bliven LF, Ward B, Dacey JWH, Schlosser P, Hendricks MB (2004) Influence of rain on air-sea gas exchange: lessons from a model ocean. J Geophys Res 109:C08S18. doi: 10.1029/2003JC001806CrossRefGoogle Scholar
  140. Ho DT, Law CS, Smith MJ, Schlosser P, Harville M, Hill P (2006) Measurements of air-sea gas exchange at high wind speeds in the southern ocean: implications for global parameterizations. Geophys Res Lett 33:16611–16616. doi: 10.1029/2006GL026817CrossRefGoogle Scholar
  141. Ho DT, Veron F, Harrison E, Bliven LF, Scott N, McGillis WR (2007) The combined effect of rain and wind on air-water gas exchange: a feasibility study. J Mar Syst 66:150–160. doi: 10.1016/j.jmarsys.2006.02.012CrossRefGoogle Scholar
  142. Ho DT, Sabine CL, Hebert D, Ullman DS, Wanninkhof R, Hamme RC, Strutton PG, Hales B, Edson JB, Hargreaves BR (2011a) Southern ocean gas exchange experiment: setting the stage. J Geophys Res 116:C00F08. doi: 10.1029/2010JC006852CrossRefGoogle Scholar
  143. Ho DT, Wanninkhof R, Schlosser P, Ullman DS, Hebert D, Sullivan KF (2011b) Toward a universal relationship between wind speed and gas exchange: gas transfer velocities measured with 3He/SF6 during the Southern Ocean Gas Exchange Experiment. J Geophys Res 116:C00F04. doi: 10.1029/2010JC006854CrossRefGoogle Scholar
  144. Högström U (1996) Review of some basic characteristics of the atmospheric surface layer. Bound-Lay Meteorol 78:215–246Google Scholar
  145. Högström U, Sahlée E, Drennan WM, Kahma KK, Smedman A-S, Johansson C, Pettersson H, Rutgersson A, Tuomi L, Zhang F, Johansson M (2008) Momentum fluxes and wind gradients in the marine boundary layer – a multi platform study. Boreal Environ Res 13:475–502Google Scholar
  146. Holtslag A, De Bruin H (1988) Applied modeling of the nighttime surface energy balance over land. J Appl Meteorol 27:689–704Google Scholar
  147. Hoover TE, Berkshire DC (1969) Effects of hydration on carbon dioxide exchange across an air-water interface. J Geophys Res 74(2):456–464Google Scholar
  148. Hoppel WA, Frick GM, Fitzgerald JW (2002) Surface source function for sea-salt aerosol and aerosol dry deposition to the ocean surface. J Geophys Res 107:4382. doi: 10.1029/2001JD002014CrossRefGoogle Scholar
  149. Hoppel WA, Caffrey PF, Frick GM (2005) Particle deposition on water: surface source versus upwind source. J Geophys Res 110:D10206. doi: 10.1029/2004JD005148CrossRefGoogle Scholar
  150. Horst T, Lenschow D (2009) Attenuation of scalar fluxes measured with spatially displaced sensors. Bound-Lay Meteorol 130:275–300. doi: 10.1007/s10546-008-9348-0CrossRefGoogle Scholar
  151. Hoyer K, Holzner M, Lüthi B, Guala M, Liberzon A, Kinzelbach W (2005) 3D scanning particle tracking velocimetry. Exp Fluids 39:923–934. doi: 10.1007/s00348-005-0031-7CrossRefGoogle Scholar
  152. Huebert B, Blomquist B, Hare JE, Fairall CW, Johnson J, Bates T (2004) Measurements of the sea-air DMS flux and transfer velocity using eddy correlation. J Geophys Res Lett 31:L23113. doi: 10.1029/2004GL021567CrossRefGoogle Scholar
  153. Hung L-P, Garbe CS, Tsai W-T (2011) Validation of eddy-renewal model by numerical simulation. In: Komori S, McGillis W, Krose R (eds) Gas transfer at water surfaces 2010. Kyoto University Press, Kyoto, pp 165–176Google Scholar
  154. Hunt J, Belcher S, Stretch D, Sajjadi S, Clegg J (2011) Turbulence and wave dynamics across gas-liquid interfaces. In: Komori S, McGillis W, Kurose R (eds) Gas transfer at water surfaces 2010. Kyoto University Press, KyotoGoogle Scholar
  155. Ito T, Hamme RC, Emerson S (2011) Temporal and spatial variability of noble gas tracers in the north pacific. J Geophys Res 116:C08039. doi: 10.1029/2010JC006828CrossRefGoogle Scholar
  156. Iversen T (1989) Numerical modelling of the long range atmospheric transport of sulphur dioxide and particulate sulphate to the arctic. Atmos Environ 23(11):2571–2595. doi: 10.1016/0004-6981(89)90267-9CrossRefGoogle Scholar
  157. Jackson D, Wick G, Hare J (2011) A comparison of satellite-derived carbon dioxide transfer velocities from a physically-based model with GasEx cruise observations. J Geophys Res. doi: 10.1029/2011JC007329 (in press)
  158. Jähne B (1989) Energy balance in small-scale waves: an experimental approach using optical slope measuring technique and image processing. In: Komen GJ, Oost WA (eds) Radar scattering from modulated wind waves. Kluwer, Dordrecht, pp 105–120Google Scholar
  159. Jähne B, Haußecker H (1998) Air-water gas exchange. Annu Rev Fluid Mech 30:443–468. doi: 10.1146/annurev.fluid.30.1.443CrossRefGoogle Scholar
  160. Jähne B, Riemer KS (1990) Two-dimensional wave number spectra of small-scale water surface waves. J Geophys Res 95:11531–11546Google Scholar
  161. Jähne B, Münnich KO, Siegenthaler U (1979) Measurements of gas exchange and momentum transfer in a circular wind-water tunnel. Tellus 31:321–329Google Scholar
  162. Jähne B, Munnich K, Bosinger R, Dutzi A, Huber W, Libner P (1987) On the parameters influencing air-water gas exchange. J Geophys Res 92:1937–1949Google Scholar
  163. Janssen PAEM (2004) The interaction of ocean waves and wind. Cambridge University Press, CambridgeGoogle Scholar
  164. Jeffery CD, Woolf DK, Robinson IS, Donlon CJ (2007) One-dimensional modelling of convective CO2 exchange in the Tropical Atlantic. Ocean Model 19:161–182. doi: 10.1016/j.ocemod.2007.07.003CrossRefGoogle Scholar
  165. Jeffery C, Robinson I, Woolf D (2010) Tuning a physically-based model of the air-sea gas transfer velocity. Ocean Model 31:28–35. doi: 10.1016/j.ocemod.2009.09.001CrossRefGoogle Scholar
  166. Jehle M, Jähne B (2008) A novel method for three-dimensional three-component analysis of flow close to free water surfaces. Exp Fluids 44:469–480. doi: 10.1007/s00348-007-0453-5CrossRefGoogle Scholar
  167. Jessup AT, Zappa C, Loewen MR, Hesany V (1997a) Infrared remote sensing of breaking waves. Nature 385(6611):52–55. doi: 10.1038/385052a0CrossRefGoogle Scholar
  168. Jessup AT, Zappa CJ, Yeh HH (1997b) Defining and quantifying microscale wave breaking with infrared imagery. J Geophys Res 102(C10):23145–23153Google Scholar
  169. Jessup AT, Asher WE, Atmane M, Phadnis K, Zappa CJ, Loewen MR (2009) Evidence for complete and partial surface renewal at an air-water interface. Geophys Res Lett 36:1–5. doi: 10.1029/2009GL038986CrossRefGoogle Scholar
  170. Jin X, Gruber N (2003) Offsetting the radiative benefit of ocean iron fertilization by enhancing N2O emissions. Geophys Res Lett 30:2249. doi: 10.1029/2003GL018458CrossRefGoogle Scholar
  171. Johnson M (2010) A numerical scheme to calculate temperature and salinity dependent air-water transfer velocities for any gas. Ocean Sci 6:913–932. doi: 10.5194/os-6-913-2010CrossRefGoogle Scholar
  172. Johnson KS, Berelson WM, Boss ES, Chase Z, Claustre H, Emerson SR, Gruber N, Körtzinger A, Perry MJ, Riser SC (2009) Observing biogeochemical cycles at global scales with profiling floats and gliders: prospects for a global array. Oceanography 22:216–225Google Scholar
  173. Johnson M, Hughes C, Bell T, Liss P (2011) A rumsfeldian analysis of uncertainty in air-sea gas exchange. In: Gas transfer at water surface 2010. Kyoto University Press, Kyoto, pp 464–484Google Scholar
  174. Kähler C, Kompenhans J (2000) Fundamentals of multiple plane stereo particle image velocimetry. Exp Fluids 29:70–77Google Scholar
  175. Keeling R (1993) On the role of large bubbles in air-sea gas exchange and supersaturation in the ocean. J Mar Res 51:237–271Google Scholar
  176. Keller K (1994) Chemical enhancement of carbon dioxide transfer across the air-sea interface. Ph.D. thesis, Massachusetts Institute of Technology. http://dspace.mit.edu/bitstream/handle/1721.1/35997/32162323.% pdf?sequence=1
  177. Kihm C, Körtzinger A (2010) Air-sea gas transfer velocity for oxygen derived from float data. J Geophys Res 115:C12003. doi: 10.1029/2009JC006077
  178. Kitaigorodskii S (1984) On the fluid dynamical theory of turbulent gas transfer across an air-sea interface in the presence of breaking wind waves. J Phys Oceanogr 14:960–972. doi: 10.1175/1520-0485(1984)014<0960:OTFDTO>2.0.CO;2CrossRefGoogle Scholar
  179. Kitaigorodskii S (2011) The calculation of the gas transfer between the ocean and atmosphere. In: Komori S, McGillis W, Kurose R (eds) Gas transfer at water surfaces 2011. Kyoto University Press, Kyoto, pp 13–28Google Scholar
  180. Kitaigorodskii S, Donelan MA (1984) Wind–wave effects on gas transfer. In: Brutsært W, Jirka GH (eds) Gas transfer at water surfaces. Reidel, Dordrecht, pp 147–170Google Scholar
  181. Kline SJ, Reynolds WC, Schraub FA, Runstadler PW (1967) The structure of turbulent boundary layers. J Fluid Mech 30(04):741–773. doi: 10.1017/S0022112067001740CrossRefGoogle Scholar
  182. Komori S, Takagaki N, Saiki R, Suzuki N, Tanno K (2007) The effect of raindrops on interfacial turbulence and air-water gas transfer. In: Handler RA, Garbe C, Jähne B (eds) Transport at the air-sea interface. Springer, Berlin/Heidelberg, pp 169–179Google Scholar
  183. Krakauer NY, Randerson JT, Primeau FW, Gruber N, Menemenlis D (2006) Carbon isotope evidence for the latitudinal distribution and wind speed dependence of the air-sea gas transfer velocity. Tellus B 58(5):390–417Google Scholar
  184. Kromer B, Roether W (1983) Field measurements of air-sea gas exchange by the radon deficit method during jasin 1978 and fgge 1979. In: Meteor Forschungsergebnisse, Reihe A/B Allgemeines, Physik und Chemie des Meeres, Gebrüder Bornträger, vol A/B24, Deutsche Forschungsgemeinschaft, Berlin/Stuttgart, pp 55–76Google Scholar
  185. Lakehal D, Fulgosi M, Yadigaroglu G, Banerjee S (2003) Direct numerical simulation of turbulent heat transfer across a mobile, sheared gas-liquid interface. J Heat Transf 15:1129–1139Google Scholar
  186. Lamont JC, Scott DS (1970) An eddy cell model of mass transfer into the surface of a turbulent liquid. AIChE J 16:512–519. doi: 10.1002/aic.690160403CrossRefGoogle Scholar
  187. Langmuir I (1938) Surface motion of water induced by wind. Science 87(2250):119–123. doi: 10.1126/science.87.2250.119CrossRefGoogle Scholar
  188. Le Clainche Y, Vézina A, Levasseur M, Cropp RA, Gunson JR, Vallina SM, Vogt M, Lancelot C, Allen JI, Archer SD, Bopp L, Deal C, Elliott S, Jin M, Malin G, Schoemann V, Simo R, Six KD, Stefels J (2010) A first appraisal of prognostic ocean DMS models and prospects for their use in climate models. Global Biogeochem Cycles 24(3):GB3021. doi: 10.1029/2009GB003721CrossRefGoogle Scholar
  189. Le Quéré C, Saltzman ES (eds) (2009) Surface ocean-lower atmosphere processes, vol 187, Geophysical monograph series. AGU, Washington, DCGoogle Scholar
  190. Ledwell J (1984) The variation of the gas transfer coefficient with molecular diffusivity. In: Brutsært W, Jirka GH (eds) Gas transfer at water surfaces. Reidel, Dordrecht, pp 293–303Google Scholar
  191. Lewis ER, Schwartz SE (2004) Sea salt aerosol production: mechanisms, methods, measurements, and models. American Geophysical Union, Washington, DCGoogle Scholar
  192. Li M, Garrett C (1995) Is langmuir circulation driven by surface waves or surface cooling? J Phys Oceanogr 25(1):64–76. doi: 10.1175/1520-0485(1995)025<0064:ILCDBS>2.0.CO;2CrossRefGoogle Scholar
  193. Li M, Garrett C, Skyllingstad E (2005) A regime diagram for classifying turbulent large eddies in the upper ocean. Deep-Sea Res 52(2):259–278. doi: 10.1016/j.dsr.2004.09.004CrossRefGoogle Scholar
  194. Liberzon A, Gurka R, Hetsroni G (2004) XPIV-multi-plane stereoscopic particle image velocimetry. Exp Fluids 36:355–362Google Scholar
  195. Liss PS (1971) Exchange of SO2 between the atmosphere and natural waters. Nature 233(5318):327–329. doi: 10.1038/233327a0CrossRefGoogle Scholar
  196. Liss P (1975) Chemistry of the sea surface microlayer. In: Riley J, Skirrow G (eds) Chemical oceanography, vol 2. Academic, London, pp 192–244Google Scholar
  197. Liss P (1983) Gas transfer: experiments and geochemical implications. In: Liss P, Slinn W (eds) Air-sea exchange of gases and particles. Springer, Dordrecht, pp 241–298Google Scholar
  198. Liss P, Martinelli F (1978) The effect of oil films on the transfer of oxygen and water vapour across an air-water interface. Thalass Jugosl 14:215–220Google Scholar
  199. Liss PS, Merlivat L (1986) Air-sea gas exchange rates: introduction and synthesis. In: Buat-Menard P (ed) The role of air-sea exchange in geochemical cycling. Reidel, Boston, pp 113–129Google Scholar
  200. Liss PS, Slater PG (1974) Flux of gases across the air-sea interface. Nature 247:181–184Google Scholar
  201. Liss P, Watson A, Bock E, Jähne B, Asher W, Frew N, Hasse L, Korenowski G, Merlivat L, Phillips L, Schlüssel P, Woolf D (1997) Report group 1 – physical processes in the microlayer and the air-sea exchange of trace gases. In: Liss P, Duce R (eds) The sea surface and global change. Cambridge University Press, Cambridge, pp 1–33Google Scholar
  202. Long MS, Keene WC, Kieber DJ, Erickson DJ, Maring H (2011) A sea-state based source function for size- and composition-resolved marine aerosol production. Atmos Chem Phys 11:1203–1216. doi: 10.5194/acp-11-1203-2011CrossRefGoogle Scholar
  203. Longuet-Higgins MS, Cleaver RP, Fox MJH (1994) Crest instabilities of gravity waves. Part 2. Matching and asymptotic analysis. J Fluid Mech 259:333–344Google Scholar
  204. Loose B, McGillis W, Schlosser P, Perovich D, Takahashi T (2009) Effects of freezing, growth, and ice cover on gas transport processes in laboratory seawater experiments. Geophys Res Lett 36. doi: 10.1029/2008gl036318
  205. Loose B, Miller L, Elliott S, Papakyriakou T (2011a) Sea ice biogeochemistry and material transport across the frozen interface. Oceanography 24:202–218. doi: 10.5670/oceanog.2011.72CrossRefGoogle Scholar
  206. Loose B, Schlosser P, Perovich D, Ringelberg D, Ho D, Takahashi T, Reynolds C, McGillis W, Tison J (2011b) Gas diffusion through columnar laboratory sea ice: implications for mixed-layer ventilation of CO2 in the seasonal ice zone. Tellus B 63. doi: 10.1111/j.1600-0889.2010.00506.xGoogle Scholar
  207. Lorke A, Peeters F (2006) Toward a unified scaling relation for interfacial fluxes. J Phys Oceanogr 36(5):955–961Google Scholar
  208. MacIntyre S, Eugster W, Kling GW (2002) The critical importance of buoyancy flux for gas flux across the air-water interface. In: Donelan MA, Drennan WM, Saltzman ES, Wanninkhof R (eds) Gas transfer at water surfaces, vol 127, Geophysical monograph. American Geophysical Union, Washington, DC, pp 13–28Google Scholar
  209. Mackay D, Yeun ATK (1983) Mass transfer coefficient correlations for volatilization of organic solutes from water. Environ Sci Technol 17:211–217Google Scholar
  210. Manasseh R, Babanin AV, Forbes C, Richards K, Bobevski I, Ooi A (2006) Passive acoustic determination of wave-breaking events and their severity across the spectrum. J Atmos Ocean Technol 23:599–618Google Scholar
  211. Marion G, Millero F, Feistel R (2009) Precipitation of solid phase calcium carbonates and their effect on application of seawater SA-T -P models. Ocean Sci 5:285–291Google Scholar
  212. Matthews B (1999) The rate of air-sea CO2 exchange: chemical enhancement and catalysis by marine microalgae. Ph.D. thesis, University of East Anglia, NorwichGoogle Scholar
  213. McGillis WR, Wanninkhof R (2006) Aqueous CO2 gradients for air-sea flux estimates. Mar Chem 98:100–108Google Scholar
  214. McGillis W, Edson J, Hare J, Fairall C (2001) Direct covariance air-sea CO2 fluxes. J Geophys Res 106:16729–16745Google Scholar
  215. McGillis W, Edson J, Zappa C, Ware J, McKenna S, Terray E, Hare J, Fairall C, Drennan W, Donelan M, DeGrandpre M, Wanninkhof R, Feely R (2004a) Air-sea CO2 exchange in the equatorial Pacific. J Geophys Res 109:C08S02. doi: 10.1029/2003JC002256CrossRefGoogle Scholar
  216. McGillis WR, Asher WE, Wanninkhof R, Jessup AT, Feely RA (2004b) Air-sea CO2 exchange in the equatorial pacific. J Geophys Res 109:C08S01Google Scholar
  217. McKenna SP, McGillis WR (2004) The role of free-surface turbulence and surfactants in air-water gas transfer. Int J Heat Mass Transf 47:539–553. doi: 10.1016/j.ijheatmasstransfer.2003.06.001CrossRefGoogle Scholar
  218. McNeil C, D’Asaro E (2007) Parameterization of air sea gas fluxes at extreme wind speeds. J Mar Syst 66:110–121. doi: 10.1016/j.jmarsys.2006.05.013CrossRefGoogle Scholar
  219. McNeil CL, Ward B, McGillis WR, DeGrandpre MD, Marcinowski L (2006) Fluxes of N2, O2, and CO2 in nearshore waters off Martha’s Vineyard. Cont Shelf Res 26:1281–1294Google Scholar
  220. McWilliams J, Sullivan P, Moeng C (1997) Langmuir turbulence in the ocean. J Fluid Mech 334:1–30Google Scholar
  221. Melville WK (1996) The role of surface-wave breaking in air-sea interaction. Annu Rev Fluid Mech 28:279Google Scholar
  222. Miller L, Papakyriakou T, Collins R, Deming J, Ehn J, Macdonald R, Mucci A, Owens O, Raudsepp M, Sutherland N (2011) Carbon dynamics in sea ice: a winter flux time series. J Geophys Res 116:C02028. doi: 10.1029/2009jc006058CrossRefGoogle Scholar
  223. Monahan E, O’Muircheartaigh I (1980) Optimal power-law description of oceanic whitecap coverage dependence on wind speed. J Phys Oceanogr 10:2094–2099Google Scholar
  224. Monahan EC, Spillane MC (1984) The role of whitecaps in air-sea gas exchange. In: Brutsaert W, Jirka GH (eds) Gas transfer at water surfaces. Reidel, Hingham, pp 495–503Google Scholar
  225. Monahan E, Fairall C, Davidson K, Jones-Boyle P (1983) Observed interrelations between 10 m winds, ocean whitecaps and marine aerosols. Q J R Meteorol Soc 109:379–392Google Scholar
  226. Müller D, Müller B, Renz U (2001) Three-dimensional particle-streak tracking (PST) velocity measurements of a heat exchanger inlet flow. Exp Fluids 30(6):645–656. doi: 10.1007/s003480000242CrossRefGoogle Scholar
  227. Müller SA, Joos F, Plattner GK, Edwards NR, Stocker TF (2008) Modeled natural and excess radiocarbon: sensitivities to the gas exchange formulation and ocean transport strength. Global Biogeochem Cycles 22(3):GB3011. doi: 10.1029/2007GB003065CrossRefGoogle Scholar
  228. Naegler T, Ciais P, Rodgers K, Levin I (2006) Excess radiocarbon constraints on air-sea gas exchange and the uptake of CO2 by the oceans. Geophys Res Lett 33(11):L11802. doi: 10.1029/2005GL025408CrossRefGoogle Scholar
  229. Nägler T (2009) Reconciliation of excess 14C-constrained global CO2 piston velocity estimates. Tellus B 61(2):372–384. doi: 10.1111/j.1600-0889.2008.00408.xCrossRefGoogle Scholar
  230. Najjar R, Orr J (1998) Design of OCMIP-2 simulations of chlorofluorocarbons, the solubility pump and common biogeochemistry, http://www.cgd.ucar.edu/oce/klindsay/OCMIP/design.pdf
  231. Nakagawa H, Nezu I (1981) Structure of space-time correlation of bursting phenomena in an open-channel flow. J Fluid Mech 104:1–43. doi: 10.1017/S0022112081002796CrossRefGoogle Scholar
  232. Nightingale PD, Liss PS, Schlosser P (2000a) Measurements of air-sea gas transfer during an open ocean algal bloom. Geophys Res Lett 27(14):2117–2120. doi: 10.1029/2000GL011541CrossRefGoogle Scholar
  233. Nightingale PD, Malin G, Law CS, Watson AJ, Liss PS, Liddicoat MI, Boutin J, Upstill-Goddard RC (2000b) In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochem Cycles 14(1):373–387. doi: 10.1029/1999GB900091CrossRefGoogle Scholar
  234. Nilsson ED, Rannik U, Swietlicki E, Leek C, Aalto PP, Zhou J, Norman M (2001) Turbulent aerosol fluxes over the Arctic Ocean. 2. wind driven sources from the sea. J Geophys Rev 106:32129–32154. doi: 10.1029/2000JD900747CrossRefGoogle Scholar
  235. Nilsson E, Rutgersson A, Sullivan P (2010) Flux attenuation due to sensor separation over sea. J Atmos Ocean Technol 27:856–868. doi: 10.1175/2010JTECHA1388.1CrossRefGoogle Scholar
  236. Nomura D, Eicken H, Gradinger R, Shirasawa K (2010a) Rapid physically driven invesrion of the air-sea ice CO2 flux in the seasonal landfast ice off Barrow, Alaska after onset of surface melt. Cont Shelf Res 30:1998–2004Google Scholar
  237. Nomura D, Yoshikawa-Inoue H, Toyota T, Shirasawa K (2010b) Effects of snow, snowmelting and refreezing processes on air-sea-ice CO2 flux. J Glaciol 56:262–270Google Scholar
  238. Oh S-H, Mizutani N, Suh K-D (2008) Laboratory observation of coherent structures beneath microscale and large-scale breaking waves under wind action. Exp Therm Fluid Sci 32:1232–1247Google Scholar
  239. Okuda K (1982) The internal structure of short wind waves. Part I: on the internal vorticity structure. J Oceanogr Soc Jpn 38:28–42Google Scholar
  240. Olsen A, Omar AM, Stuart-Menteth AC, Triñanes JA (2004) Diurnal variations of surface ocean pCO2 and sea–air CO2 flux evaluated using remotely sensed data. Geophys Res Lett 31:L20304. doi: 10.1029/2004GL020583CrossRefGoogle Scholar
  241. Osborne T, Farmer D, Vagle S, Thorpe S, Cure M (1992) Measurements of bubble plumes and turbulence from a submarine. Atmos Ocean 30:419–440. doi: 10.1080/07055900.1992.9649447CrossRefGoogle Scholar
  242. Panofsky H, Dutton J (1984) Atmospheric turbulence, models and methods for engineering applications. Wiley, New YorkGoogle Scholar
  243. Papadimitriou S, Kennedy H, Kattner G, Dieckmann G, Thomas D (2004) Experimental evidence for carbonate precipitation and CO2 degassing during sea ice formation. Geochim Cosmochim Acta 68:1749–1761. doi: 10.1016/j.gca.2003.07.004CrossRefGoogle Scholar
  244. Papakyriakou T, Miller L (2011) Springtime CO2 exchange over seasonal sea ice in the Canadian Arctic Archipelago. Ann Glaciol 52:215–224Google Scholar
  245. Peacock S (2004) Debate over the ocean bomb radiocarbon sink: closing the gap. Global Biogeochem Cycles 18(2):GB2022. doi: 10.1029/2003GB002211CrossRefGoogle Scholar
  246. Peirson WL, Banner ML (2003) Aqueous surface layer flows induced by microscale breaking wind waves. J Fluid Mech 479:1–38. doi: 10.1017/S0022112002003336CrossRefGoogle Scholar
  247. Peng TH, Broecker WS, Mathieu GG, Li Y-H, Bainbridge A (1979) Radon evasion rates in the Atlantic and Pacific oceans as determined during the geosecs program. J Geophys Res 84(C5):2471–2487Google Scholar
  248. Pereira F, Gharib M, Dabiri D, Modarress M (2000) Defocusing PIV: a three component 3D DPIV measurement technique. Application to bubbly flows. Exp Fluids 29:S78–S84Google Scholar
  249. Pereira F, Lu J, Castaño GE, Gharib M (2007) Microscale 3D flow mapping with μDDPIV. Exp Fluids 42:589–599. doi: 10.1007/s00348-007-0267-5CrossRefGoogle Scholar
  250. Petelski T, Piskozub J (2006) Vertical coarse aerosol fluxes in the atmospheric surface layer over the north polar waters of the atlantic. J Geophys Res 111:C06039. doi: 10.1029/2005JC003295CrossRefGoogle Scholar
  251. Pettersson H, Kahma K, Tuomi L (2010) Wave directions in a narrow bay. J Phys Oceanogr 40:155–169. doi: 10.1175/2009JPO4220.1CrossRefGoogle Scholar
  252. Pettersson H, Kahma K, Rutgersson A, Perttilä M (2011) Air-sea carbon dioxide exchange during upwelling. In: Komori S, McGillis W, Kurose R (eds) Gas transfer at water surfaces 2011. Kyoto University Press, Kyoto, pp 420–429Google Scholar
  253. Phillips O (1977) The dynamics of the upper ocean, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  254. Phillips O, Posner F, Hansen J (2001) High range resolution radar measurements of the speed distribution of breaking events in wind-generated ocean waves: surface impulse and wave energy dissipation rates. J Phys Oceanogr 31:450–460. doi: 10.1175/1520-0485(2001)031<0450:HRRRMO>2.0.CO;2CrossRefGoogle Scholar
  255. Piskozub J, Petelski T (2009) Scavenging by marine aerosol. In: SOLAS open science conference, BarcelonaGoogle Scholar
  256. Poisson A, Chen C (1987) Why is there little anthropogenic CO2 in the Antarctic bottom water? Deep-Sea Res Part A 34:1255–1275Google Scholar
  257. Prasad AK (2000) Stereoscopic particle image velocimetry. Exp Fluids 29:103–116Google Scholar
  258. Prytherch J, Yelland M, Pascal R, Moat B, Skjelvan I, Neill C (2010) Direct measurements of the co2 flux over the ocean: development of a novel method. Geophys Res Lett 37:L03607. doi: 10.1029/2009GL041482CrossRefGoogle Scholar
  259. Raffel M, Willert CE, Wereley ST, Kompenhans J (2007) Particle image velocimetry: a practical guide. Springer, HeidelbergGoogle Scholar
  260. Rannik U, Vesala T, Keskinen R (1997) On the damping of temperature fluctuations in a circular tube relevant to the eddy covariance technique. J Geophys Res 102:12789–12794. doi: 10.1029/97JD00362CrossRefGoogle Scholar
  261. Rashidi M, Banerjee S (1990) The effect of boundary conditions and shear rate on streak formation and breakdown in turbulent channel flows. Phys Fluids 2:1827–1838. doi: 10.1063/1.857656CrossRefGoogle Scholar
  262. Reul N, Branger H, Giovanangeli J-P (2008) Air flow structure over short-gravity breaking water waves. Bound-Lay Meteorol 126(3):477–505Google Scholar
  263. Rhee T, Nightingale P, Woolf D, Caulliez G, Bowyer P, Andreae M (2007) Influence of energetic wind and waves on gas transfer in a large wind-wave tunnel facility. J Geophys Res (Ocean) 112:5027. doi: 10.1029/2005JC003358CrossRefGoogle Scholar
  264. Rinne J, Douffet T, Prigent Y, Durand P (2008) Field comparison of disjunct and conventional eddy covariance techniques for trace gas flux measurements. Environ Pollut 152:630–635. doi: 10.1016/j.envpol.2007.06.063CrossRefGoogle Scholar
  265. Roether W, Kromer B (1984) Optimum application of the radon deficit method to obtain air–sea gas exchange rates. In: Brutsaert W, Jirka GH (eds) Gas transfer at water surfaces. Reidel, Hingham, pp 447–457Google Scholar
  266. Rowe M, Fairall C, Perlinger J (2011) Chemical sensor resolution requirements for near-surface measurements of turbulent fluxes. Atmos Chem Phys 11:5263–5275. doi: 10.5194/acp-11-5263-2011CrossRefGoogle Scholar
  267. Rutgersson A, Smedman A (2010) Enhanced air–sea CO2 transfer due to water-side convection. J Mar Syst 80(1–2):125–134. doi: 10.1016/j.jmarsys.2009.11.004CrossRefGoogle Scholar
  268. Rutgersson A, Norman M, Schneider B, Pettersson H, Sahlée E (2008) The annual cycle of carbon-dioxide and parameters influencing the air-sea carbon exchange in the Baltic Proper. J Mar Syst 74:381–394. doi: 10.1016/j.jmarsys.2008.02.005CrossRefGoogle Scholar
  269. Rutgersson A, Smedman A, Sahlée E (2011) Oceanic convective mixing and the impact on air-sea gas transfer velocity. Geophys Res Lett 38:L02602. doi: 10.1029/2010GL045581CrossRefGoogle Scholar
  270. Rysgaard S, Glud R (2004) Anaerobic n-2 production in arctic sea ice. Limnol Oceanogr 49:86–94Google Scholar
  271. Rysgaard S, Glud R, Sejr M, Bendtsen J, Christensen P (2007) Inorganic carbon transport during sea ice growth and decay: a carbon pump in polar seas. J Geophys Res 112:C03016. doi: 10.1029/2006jc003572CrossRefGoogle Scholar
  272. Rysgaard S, Glud R, Sejr M, Blicher M, Stahl H (2008) Denitrification activity and oxygen dynamics in arctic sea ice. Polar Biol 31:527–537. doi: 10.1007/s00300-007-0384-xCrossRefGoogle Scholar
  273. Rysgaard S, Bendtsen J, Delille B, Dieckmann G, Glud R, Kennedy H, Mortensen J, Papadimitriou S, Thomas D, Tison J-L (2011) Sea ice contribution to the air–sea CO2 exchange in the Arctic and Southern Oceans. Tellus B 63(5). doi: 10.1111/j.1600-0889.2011.00571.xGoogle Scholar
  274. Sahlée E, Drennan W (2009) Measurements of damping of temperature fluctuations in a tube. Bound-Lay Meteorol 132:339–348. doi: 10.1007/s10546-009-9396-0CrossRefGoogle Scholar
  275. Sahlée E, Smedman A, Rutgersson A, Högström U (2008) Spectra of CO2 and water vapour in the marine atmospheric surface layer. Bound-Lay Meteorol 126:279–295. doi: 10.1007/s10546-007-9230-5CrossRefGoogle Scholar
  276. Salter M, Upstill-Goddard R, Nightingale P, Archer S, Blomquist B, Ho D, Huebert B, Schlosser P, Yang M (2011) Impact of an artificial surfactant release on air-sea gas fluxes during Deep Ocean Gas Exchange Experiment II. J Geophys Res 116:C11016. doi: 10.1029/2011JC007023CrossRefGoogle Scholar
  277. Sarmiento J, Orr J, Siegenthaler U (1992) A perturbation simulation of CO2 uptake in an ocean general circulation model. J Geophys Res 97(C3):3621–3645. doi: 10.1029/91JC02849CrossRefGoogle Scholar
  278. Saylor JR, Handler RA (1997) Gas transport across an air/water interface populated with capillary waves. Phys Fluids 9:2529–2541Google Scholar
  279. Schimpf U, Garbe C, Jähne B (2004) Investigation of transport processes across the sea surface microlayer by infrared imagery. J Geophys Res-Ocean 109(C8):C08S13. doi: 10.1029/2003JC001803CrossRefGoogle Scholar
  280. Schnieders J, Garbe C, Peirson W, Smith G, Zappa C (2013) Analyzing the footprints of near surface aqueous turbulence – an image processing based approach. J Geophys Res 118(3): 1272–1286. doi: 10.1002/jgrc.20102Google Scholar
  281. Schröder A, Geisler R, Elsinga G, Scarano F, Dierksheide U (2008) Investigation of a turbulent spot and a tripped turbulent boundary layer flow using time-resolved tomographic piv. Exp Fluids 44:305–316. doi: 10.1007/s00348-007-0403-2CrossRefGoogle Scholar
  282. Scott NV, Handler RA, Smith GB (2008) Wavelet analysis of the surface temperature field at an air–water interface subject to moderate wind stress. Int J Heat Fluid Flow 29(4):1103–1112. doi: 10.1016/j.ijheatfluidflow.2007.11.002CrossRefGoogle Scholar
  283. Semiletov I, Makshtas A, Akasofu S, Andreas E (2004) Atmospheric co2 balance: the role of arctic sea ice. Geophys Res Lett 31:L05121. doi: 10.1029/02003GL017996CrossRefGoogle Scholar
  284. Shaikh N, Siddiqui K (2010) An experimental investigation of the near surface flow over air-water and air-solid interfaces. Phys Fluids 22(2):025103Google Scholar
  285. Shakhova N, Semiletov I, Leifer I, Salyuk A, Rekant P, Kosmach D (2010a) Geochemical and geophysical evidence of methane release over the east siberian arctic shelf. J Geophys Res C08007. doi: 10.1029/2009jc005602
  286. Shakhova N, Semiletov I, Salyuk A, Yusupov V, Kosmach D, Gustafsson O (2010b) Extensive methane venting to the atmosphere from sediments of the east siberian arctic shelf. Science 327. doi: 10.1126/science.1182221Google Scholar
  287. Sheng J, Malkiel E, Katz J (2008) Using digital holographic microscopy for simultaneous measurements of 3d near wall velocity and wall shear stress in a turbulent boundary layer. Exp Fluids 45:1023–1035. doi: 10.1007/s00348-008-0524-2CrossRefGoogle Scholar
  288. Siddiqui MHK, Loewen MR (2007) Characteristics of the wind drift layer and microscale breaking waves. J Fluid Mech 573:417–456. doi: 10.1017/S0022112006003892CrossRefGoogle Scholar
  289. Siddiqui K, Loewen M (2010) Phase-Averaged flow properties beneath microscale breaking waves. Bound-Lay Meteorol 134(3):499–523. doi: 10.1007/s10546-009-9447-6CrossRefGoogle Scholar
  290. Siddiqui M, Loewen M, Jessup A, Asher W (2001) Infrared remote sensing of microscale breaking waves andnear-surface flow fields. In: Geoscience and Remote Sensing Symposium, 2001. IGARSS 01, vol 2. IEEE 2001 International, pp 969–971. doi: 10.1109/IGARSS.2001.976697
  291. Siddiqui M, Loewen MR, Asher WE, Jessup AT (2004) Coherent structures beneath wind waves and their influence on air-water gas transfer. J Geophys Res 109:C03024Google Scholar
  292. Slinn SA, Slinn VGN (1980) Predictions for particle deposition on natural waters. Atmos Environ 14:1013–1016Google Scholar
  293. Smedman A-S, Tjernström M, Högström U (1994) The near-neutral marine atmospheric boundary layer with no surface shearing stress: a case study. J Atmos Sci 51:3399–3411Google Scholar
  294. Smethie WM Jr, Takahashi T, Chipman DW, Ledwell JR (1985) Gas exchange and co2 flux in the tropical atlantic ocean determined from 222rn and pco2 measurements. J Geophys Res 90(C4):7005–7022. doi: 10.1029/JC090iC04p07005CrossRefGoogle Scholar
  295. Smith J (1998) Evolution of Langmuir circulation during a storm. J Geophys Res-Ocean 103:12649–12668. doi: 10.1029/97JC03611CrossRefGoogle Scholar
  296. Smith CR, Paxson RD (1983) A technique for evaluation of three-dimensional behavior in turbulent boundary layers using computer augmented hydrogen bubble-wire flow visualization. Exp Fluids 1:43–49Google Scholar
  297. Smith MH, Park PM, Consterdine IE (1991) North-atlantic aerosol remote concentrations measured at a hebridean coastal site. Atmos Environ 25A:547–555Google Scholar
  298. Smith GB, Handler RA, Scott N (2007) Observations of the structure of the surface temperature field at an air-water interface for stable and unstable cases. In: Garbe CS, Handler RA, Jähne BH (eds) Transport at the air sea interface. Springer, Berlin, pp 205–222Google Scholar
  299. Soloviev A (2007) Coupled renewal model of ocean viscous sublayer, thermal skin effect and interfacial gas transfer velocity. J Mar Syst 66:19–27. doi: 10.1016/j.jmarsys.2006.03.024CrossRefGoogle Scholar
  300. Soloviev AV, Schlüssel P (1994) Parameterization of the cool skin of the ocean and of the air–ocean gas transfer on the basis of modelling surface renewal. J Phys Oceanogr 24:1339–1346Google Scholar
  301. Soloviev A, Donelan M, Graber H, Haus B, Schlüssel P (2007) An approach to estimation of near-surface turbulence and co2 transfer velocity from remote sensing data. J Mar Syst 66:182–194. doi: 10.1016/j.jmarsys.2006.03.023CrossRefGoogle Scholar
  302. Sorensen LL, Larsen SE (2010) Atmosphere-surface fluxes of CO2 using spectral techniques. Bound-Lay Meteorol 136:59–81Google Scholar
  303. Spiel D (1998) On the births of film drops from bubbles bursting on seawater surfaces. J Geophys Res 103:24907–24918Google Scholar
  304. Spitzer WS, Jenkins WJ (1989) Rates of vertical mixing, gas exchange and new production: estimates from seasonal gas cycles in the upper ocean near bermuda. J Mar Res 47(1):169–196. doi: 10.1357/002224089785076370CrossRefGoogle Scholar
  305. Springer T, Pigford R (1970) Influence of surface turbulence and surfactants on gas transport through liquid interfaces. Ind Eng Chem Fundam 9:458–465Google Scholar
  306. Steinbuck JV, Roberts PLD, Troy CD, Horner-Devine AR, Simonet F, Uhlman AH, Jaffe JS, Monismith SG, Franks PJS (2010) An autonomous open-ocean stereoscopic piv profiler. J Atmos Oceanic Tech 27(8):1362–1380. doi: 10.1175/2010JTECHO694.1CrossRefGoogle Scholar
  307. Stull R (1988) An introduction to boundary layer meteorology. Kluwer, DordrechtGoogle Scholar
  308. Sullivan PP, McWilliams JC (2010) Dynamics of winds and currents coupled to surface waves. Annu Rev Fluid Mech 42:19–42. doi: 10.1146/annurev-fluid-121108-145541CrossRefGoogle Scholar
  309. Sutherland G, Christensen KH, Ward B (2013) Wave-turbulence scaling in the ocean mixed layer. Ocean Sci 9:597–608. doi: 10.5194/os-9-597-2013Google Scholar
  310. Suntharalingam P, Buitenhuis ET, Quere CL, Dentener F, Nevison CD, Butler JH, Bange H, Forster GL (2012) Quantifying the impact of anthropogenic nitrogen deposition on oceanic nitrous oxide. Geophys Res Lett. doi: 10.1029/2011GL050778 (in press)
  311. Sweeney C, Gloor E, Jacobson A, Key R, McKinley G, Sarmiento J, Wanninkhof R (2007) Constraining global air-sea gas exchange for CO2 with recent bomb 14C measurements. Global Biogeochem Cycles 21:GB2015. doi: 10.1029/2006GB002784CrossRefGoogle Scholar
  312. Szeri AJ (1997) Capillary waves and air-sea transfer. J Fluid Mech 332:341–358Google Scholar
  313. Takagaki N, Komori S (2007) Effects of rainfall on mass transfer across the air-water interface. J Geophys Res 112:C06006. doi: 10.1029/2006jc003752CrossRefGoogle Scholar
  314. Takahashi T, Olafsson J, Goddard J, Chipman D, Sutherland S (1993) Seasonal variations of CO2 and nutrients in the high–latitude surface oceans: a comparative study. Global Biogeochem Cycles 7:843–878Google Scholar
  315. Terray E, Donelan M, Agrawal Y, Drennan W, Kahma K, Hwang P, Kitaigorodskii S (1996) Estimates of kinetic energy dissipation under breaking waves. J Phys Oceanogr 26:792–807. doi: 10.1175/1520-0485(1996)026<0792:EOKEDU>2.0.CO;2CrossRefGoogle Scholar
  316. Thorpe S (2004) Langmuir circulation. Annu Rev Fluid Mech 36:55–79. doi: 10.1146/annurev.fluid.36.052203.071431CrossRefGoogle Scholar
  317. Tison J, Haas C, Gowing M, Sleewaegen S, Bernard A (2002) Tank study of physico-chemical controls on gas content and composition during growth of young sea ice. J Glaciol 48:177–191Google Scholar
  318. Tison J-L, Brabant F, Dumont I, Stefels J (2010) High resolution DMS and DMSP time series profiles in decaying summer first-year sea ice at ISPOL (Western Weddell Sea, Antarctica). J Geophys Res SubmittedGoogle Scholar
  319. Trevena A, Jones G (2006) Dimethylsulphide and dimethylsulphoniopropionate in Antarctic sea ice and their release during sea ice melting. Mar Chem 98:210–222Google Scholar
  320. Trevena A, Jones G, Wright SW, van den Enden R (2000) Profiles of DMSP, algal pigments, nutrients and salinity in pack ice from eastern Antarctica. J Sea Res 43:265–273Google Scholar
  321. Trevena A, Jones G, Wright S, van den Enden R (2003) Profiles of dimethylsulphoniopropionate (DMSP), algal pigments, nutrients, and salinity in the fast ice of Prydz Bay, Antarctica. J Geophys Res 108:3145Google Scholar
  322. Troitskaya Y, Sergeev D, Ermakova O, Balandina G (2011) Statistical parameters of the air turbulent boundary layer over steep water waves measured by the PIV technique. J Phys Oceanogr 41:1421–1454. doi: 10.1175/2011JPO4392.1CrossRefGoogle Scholar
  323. Tsai W-T, Hung L-P (2007) Three-dimensional modeling of small-scale processes in the upper boundary layer bounded by a dynamic ocean surface. J Geophys Res 112. doi: 10.1029/2006JC003686
  324. Tsai W-T, Hung L-P (2010) Enhanced energy dissipation by parasitic capillaries on short gravity–capillary waves. J Phys Oceanogr 40:2435–2450Google Scholar
  325. Tsai W, Liu K (2003) An assessment of the effect of sea-surface surfactant onglobal atmosphere-ocean CO2 flux. J Geophys Res 108:3127. doi: 10.1029/2000JC000740CrossRefGoogle Scholar
  326. Tsai W-T, Chen S-M, Moeng C-H (2005) A numerical study on the evolution and structure of a stress-driven, free-surface turbulent shear flow. J Fluid Mech 545:163–192Google Scholar
  327. Tsai W-T, Chen S-M, Lu G-H, Garbe C (2013) Characteristics of interfacial signatures on a wind-driven gravity-capillary wave. J Geophys Res 118. doi: 10.1002/jgrc.20145Google Scholar
  328. Tulin MP, Landrini M (2001) Breaking waves in the ocean and around ships. In: Proceedings of the 23rd symposium of naval hydrodynamics, The National Academies Press, pp 713–745Google Scholar
  329. Turk D, Zappa CJ, Meinen CS, Christian JR, Ho DT, Dickson AG, McGillis WR (2010) Rain impacts on co2 exchange in the western equatorial pacific ocean. Geophys Res Lett 37:L23610. doi: 10.1029/2010gl045520CrossRefGoogle Scholar
  330. Turney D, Smith W, Banerjee S (2005) A measure of near-surface fluid motions that predicts air-water gas transfer in a wide range of conditions. Geophys Res Lett 32(4):L04607Google Scholar
  331. Upstill-Goddard R, Frost T, Henry G, Franklin M, Murrell J, Owens N (2003) Bacterioneuston control of air-water methane exchange determined with a laboratory gas exchange tank. Global Biogeochem Cycles 17(4):1108. doi: 10.1029/2003GB002043CrossRefGoogle Scholar
  332. Vagle S, McNeil C, Steiner N (2010) Upper ocean bubble measurements from the NE Pacific and estimates of their role in air-sea gas transfer of the weakly soluble gases nitrogen and oxygen. J Geophys Res 115:C12054. doi: 10.1029/2009JC005990
  333. Venkatram A, Pleim J (1999) The electrical analogy does not apply to modeling dry deposition of particles. Atmos Environ 33:3075–3076Google Scholar
  334. Veron F, Melville W, Lenain L (2008) Wave-coherent air-sea heat flux. J Phys Oceanogr 38:788–802. doi: 10.1175/2007JPO3682.1CrossRefGoogle Scholar
  335. Veron F, Melville WK, Lenain L (2011) The effects of small-scale turbulence on air-sea heat flux. J Phys Oceanogr 41(1):205–220. doi: 10.1175/2010JPO4491.1CrossRefGoogle Scholar
  336. Vesala T, Kljun N, Rannik U, Rinne J, Sogachev A, Markkanen T, Sabel-feld K, Foken T, Leclerc M (2008) Flux and concentration footprint model-ling: state of the art. Environ Pollut 152:653–666. doi: 10.1016/j.envpol.2007.06.070CrossRefGoogle Scholar
  337. Vickers D, Göckede M, Law B (2010) Uncertainty estimates for 1-h averaged turbulence fluxes of carbon diocide, latent heat and sensible heat. Tellus 62B:87–99. doi: 10.1111/j.1600-0889.2009.00449.xCrossRefGoogle Scholar
  338. Vlahos P, Monahan EC (2009) A generalized model for the air-sea transfer of dimethylsulfide at high wind speeds. Geophys Res Lett 36:L21605. doi: 10.1029/2009GL040695CrossRefGoogle Scholar
  339. Voss B, Stapf J, Berthe A, Garbe C (2012) Bichromatic particle streak velocimetry bpsv – interfacial, v3c3d velocimetry using a single camera. Exp Fluids 53:1405–1420. doi: 10.1007/s00348-012-1355-8Google Scholar
  340. Wanninkhof R (1992) Relationship between gas exchange and wind speed over the ocean. J Geophys Res 97(C5):7373–7382. doi: 10.1029/92JC00188CrossRefGoogle Scholar
  341. Wanninkhof RH, Bliven LF (1991) Relationship between gas exchange, wind speed and radar backscatter in a large wind wave tank. J Geophys Res 96(C2):2785–2796Google Scholar
  342. Wanninkhof R, Knox M (1996) Chemical enhancement of CO2 exchange in natural waters. Limnol Oceanogr 41(4):689–697Google Scholar
  343. Wanninkhof R, McGillis WR (1999) A cubic relationship between gas transfer and wind speed. Geophys Res Lett 26:1889–1892Google Scholar
  344. Wanninkhof R, Asher WE, Wepperning R, Hua C, Schlosser P, Langdon C, Sambrotto R (1993) Gas transfer experiment on georges bank using two volatile deliberate tracers. J Geophys Res 98(C11):20237–20248Google Scholar
  345. Wanninkhof R, Hitchcock G, Wiseman WJ et al (1997) Exchange, dispersion, and biological productivity on the west florida shelf: results from a lagrangian tracer study. Geophys Res Lett 24(14):1767–1770Google Scholar
  346. Wanninkhof R, Sullivan KF, Top Z (2004) Air-sea gas transfer in the southern ocean. J Geophys Res 109:C08S19. doi: 10.1029/2003JC001767CrossRefGoogle Scholar
  347. Wanninkhof R, Asher WE, Ho DT, Sweeney C, McGillis WR (2009) Advances in quantifying air-sea gas exchange and environmental forcing. Annu Rev Mar Sci 1:213–244. doi: 10.1146/annurev.marine.010908.163742CrossRefGoogle Scholar
  348. Ward B (2006) Near–surface ocean temperature. J Geophys Res 111:C02005. doi: 10.1029/2004JC002689CrossRefGoogle Scholar
  349. Watson AJ, Upstill-Goddard RC, Liss PS (1991) Air-sea exchange in rough and stormy seas measured by a dual tracer technique. Nature 349(6305):145–147Google Scholar
  350. Webb E, Pearman G, Leuning R (1980) Correction of the flux measure-ments for density effects due to hear and water vapour transfer. Q J R Meteorol Soc 106:85–100Google Scholar
  351. Weiss R (1987) Winter weddell sea project 1986: trace gas studies during legs ant v/2 and ant v/3 of polarstern. Antarct J US 22:99–100Google Scholar
  352. Wells AJ, Cenedese C, Farrar JT, Zappa CJ (2009) Variations in ocean surface temperature due to near surface flow: straining the cool skin layer. J Phys Oceanogr 39:2685–2710Google Scholar
  353. Wernet MP (2004) Planar particle imaging doppler velocimetry: a hybrid piv/dgv technique for three-component velocity measurements. Meas Sci Technol 15(10):2011Google Scholar
  354. Whitman WG (1923) The two-film theory of absorption. Chem Met Eng 29:147Google Scholar
  355. Willert CE, Gharib M (1992) Three-dimensional particle imaging with a single camera. Exp Fluids 12:353–358Google Scholar
  356. Witek ML, Flatau PJ, Quinn PK, Westphal DL (2007) Global sea-salt modeling: results and validation against multicampaign shipboard measurements. J Geophys Res 112:D08215. doi: 10.1029/2006JD007779CrossRefGoogle Scholar
  357. Witting J (1971) Effects of plane progressive irrotational waves on thermal boundary layers. J Fluid Mech 50:321–334Google Scholar
  358. Woolf D (1993) Bubbles and the air-sea transfer velocity of gases. Atmos-Ocean 31:517–540Google Scholar
  359. Woolf D (1997) Bubbles and their role in air-sea gas exchange. In: Liss P, Duce R (eds) The sea surface and global change. Cambridge University Press, Cambridge, pp 173–205Google Scholar
  360. Woolf D, Thorpe S (1991) Bubbles and the air-sea exchange of gases in near-saturation conditions. J Mar Res 49:435–466Google Scholar
  361. Woolf D, Bowyer P, Monahan E (1987) Discriminating between the film drops and jet drops produced by a simulated whitecap. J Geophys Res 92:5142–5150Google Scholar
  362. Woolf D, Leifer I, Nightingale P, Rhee T, Bowyer P, Caulliez G, de Leeuw G, Larsen S, Liddicoat M, Baker J, Andreae MO (2007) Modelling of bubble-mediated gas transfer; fundamental principles and a laboratory test. J Mar Syst 66:71–91Google Scholar
  363. Wurl O, Wurl E, Miller L, Johnson L, Vagle S (2011) Formation and global distribution of sea-surface microlayers. Biogeosciences 8:121–135Google Scholar
  364. Yang M, Blomquist B, Fairall C, Archer S, Huebert B (2011) Effects of sea surface temperature and gas solubility on air-sea exchange of Dimethylsulfide (DMS). J Geophys Res 116:C00F05. doi: 10.1029/2010JC006526CrossRefGoogle Scholar
  365. Yelland M, Pascal R, Taylor P, Moat B (2009) Autoflux: an autonomous system for the direct measurement of the air-sea fluxes of co2, heat and momentum. J Op Oceanogr 2:15–23Google Scholar
  366. Young IR, Babanin AV (2006) Spectral distribution of energy dissipation of Wind-Generated waves due to dominant wave breaking. J Phys Oceanogr 36(3):376–394. doi: 10.1175/JPO2859.1CrossRefGoogle Scholar
  367. Zappa C, Jessup AT (2005) High-resolution airborne infrared measurements of ocean skin temperature. IEEE Geosci Remote Sens Lett 2(2):146–150. doi: 10.1109/LGRS.2004.841629CrossRefGoogle Scholar
  368. Zappa CJ, Asher WE, Jessup AT (2001) Microscale wave breaking and air-water gas transfer. J Geophys Res-Ocean 106(C5):9385–9391Google Scholar
  369. Zappa CJ, Asher WE, Jessup AT, Klinke J, Long SR (2004) Microbreaking and the enhancement of air-water transfer velocity. J Geophys Res 109:C08S16. doi: 10.1029/2003JC001897CrossRefGoogle Scholar
  370. Zappa CJ, McGillis WR, Raymond PA, Edson JB, Hintsa EJ, Zemmelink HJ, Dacey JWH, Ho DT (2007) Environmental turbulent mixing controls on the air-water gas exchange in marine and aquatic systems. Geophys Res Lett 34:L10601. doi: 10.1029/2006GL028790CrossRefGoogle Scholar
  371. Zappa CJ, Ho DT, McGillis WR, Banner ML, Dacey JWH, Bliven LF, Ma B, Nystuen J (2009) Rain-induced turbulence and air-sea gas transfer. J Geophys Res 114:C07009. doi: 10.1029/2008JC005008CrossRefGoogle Scholar
  372. Zemmelink H, Delille B, Tison J, Hintsa E, Houghton L, Dacey J (2006) CO2 deposition over the multi-year ice of the western weddell sea. Geophys Res Lett 33:L13606. doi: 10.1029/2006gl026320CrossRefGoogle Scholar
  373. Zhang L, Vet R (2006) A review of current knowledge concerning size-dependent aerosol removal. China Particuology 4:272–282Google Scholar
  374. Zhao D, Toba Y (2001) Dependence of whitecap coverage on wind and wave properties. J Oceanogr 57:603–616Google Scholar
  375. Zilitinkevich S (1994) A generalized scaling for convective shear flows. Bound-Lay Meteorol 70:51–78. doi: 10.1007/BF00712523CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Christoph S. Garbe
    • 1
  • Anna Rutgersson
    • 2
  • Jacqueline Boutin
    • 3
  • Gerrit de Leeuw
    • 4
    • 5
    • 6
  • Bruno Delille
    • 7
  • Christopher W. Fairall
    • 8
  • Nicolas Gruber
    • 9
  • Jeffrey Hare
    • 10
  • David T. Ho
    • 11
  • Martin T. Johnson
    • 12
    • 13
  • Philip D. Nightingale
    • 14
  • Heidi Pettersson
    • 15
    • 16
  • Jacek Piskozub
    • 17
  • Erik Sahlée
    • 2
  • Wu-ting Tsai
    • 18
  • Brian Ward
    • 19
  • David K. Woolf
    • 20
  • Christopher J. Zappa
    • 21
  1. 1.IWR, University of HeidelbergHeidelbergGermany
  2. 2.Department of Earth SciencesUppsala UniversityUppsalaSweden
  3. 3.LOCEAN/CNRS/UPMC/IRDUniversité Pierre et Marie CurieParis Cedex O5France
  4. 4.Climate Change UnitFinnish Meteorological InstituteHelsinkiFinland
  5. 5.Department of PhysicsUniversity of HelsinkiHelsinkiFinland
  6. 6.TNOUtrechtThe Netherlands
  7. 7.Chemical Oceanography UnitUniversity of LiègeLiègeBelgium
  8. 8.Physical Sciences DivisionNOAA Earth System Research LaboratoryBoulderUSA
  9. 9.Institute of Biogeochemistry and Pollutant DynamicsETH ZürichZürichSwitzerland
  10. 10.Joint Institute for Marine and Atmospheric Research (JIMAR)University of Hawaii at ManoaHonoluluUSA
  11. 11.Department of OceanographyUniversity of HawaiiHonoluluUSA
  12. 12.Centre for Ocean and Atmospheric Sciences, School of Environmental SciencesUniversity of East AngliaNorwichUK
  13. 13.Centre for environment, fisheries and aquaculture scienceLowestoftUK
  14. 14.Plymouth Marine LaboratoryPlymouthUK
  15. 15.Marine Research UnitFinnish Meteorological InstituteHelsinkiFinland
  16. 16.HelsinkiFinland
  17. 17.Institute of OceanologyPolish Academy of SciencesSopotPoland
  18. 18.Department of Engineering Science and Ocean EngineeringNational Taiwan UniversityTaipeiTaiwan
  19. 19.School of PhysicsNational University of IrelandGalwayIreland
  20. 20.International Centre for Island TechnologyHeriot-Watt University, The Old AcademyOrkneyUK
  21. 21.Lamont-Doherty Earth ObservatoryColumbia UniversityPalisadesUSA

Personalised recommendations