Covering and Piercing Disks with Two Centers

  • Hee-Kap Ahn
  • Sang-Sub Kim
  • Christian Knauer
  • Lena Schlipf
  • Chan-Su Shin
  • Antoine Vigneron
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7074)


We consider new versions of the two-center problem where the input consists of a set \(\mathcal{D}\) of disks in the plane. We first study the problem of finding two smallest congruent disks such that each disk in \(\mathcal{D}\) intersects one of these two disks. Then we study the problem of covering the set \(\mathcal{D}\) by two smallest congruent disks. We give exact and approximation algorithms for these versions.


Covering Problem Decision Algorithm Intersection Problem Small Disk Optimal Covering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, P., Procopiuc, C.: Exact and approximation algorithms for clustering. Algorithmica 33(2), 201–226 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Agarwal, P.K., Sharir, M., Toledo, S.: Applications of parametric searching in geometric optimization. J. Algorithms 17, 292–318 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chan, T.M.: More planar two-center algorithms. Comput. Geom. Theory Appl. 13, 189–198 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chan, T.M.: Deterministic algorithms for 2-d convex programming and 3-d online linear programming. J. Algorithms 27(1), 147–166 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Clarkson, K.L.: Las Vegas algorithms for linear and integer programming when the dimension is small. J. ACM 42, 488–499 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  7. 7.
    Drezner, Z.: The planar two-center and two-median problems. Transportation Science 18, 351–361 (1984)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Eppstein, D.: Faster construction of planar two-centers. In: Proc. of SODA 1997, pp. 131–138 (1997)Google Scholar
  9. 9.
    Fischer, K., Gartner, B.: The smallest enclosing ball of balls: combinatorial structure and algorithms. In: Proc. of SoCG 2003, pp. 292–301 (2003)Google Scholar
  10. 10.
    Gonzalez, T.: Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38, 293–306 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Löffler, M., van Kreveld, M.: Largest bounding box, smallest diameter, and related problems on imprecise points. Comput. Geom. Theory Appl. 43, 419–433 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Megiddo, N.: On the ball spanned by balls. Discr. Comput. Geom. 4, 605–610 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Sharir, M., Welzl, E.: A Combinatorial Bound for Linear Programming and Related Problems. In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577, pp. 567–579. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  14. 14.
    Shin, C.-S., Kim, J.-H., Kim, S.K., Chwa, K.-Y.: Two-center Problems for a Convex Polygon. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 199–210. Springer, Heidelberg (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hee-Kap Ahn
    • 1
  • Sang-Sub Kim
    • 1
  • Christian Knauer
    • 2
  • Lena Schlipf
    • 3
  • Chan-Su Shin
    • 4
  • Antoine Vigneron
    • 5
  1. 1.Department of Computer Science and EngineeringPOSTECHPohangKorea
  2. 2.Institute of Computer ScienceUniversität BayreuthBayreuthGermany
  3. 3.Institute of Computer ScienceFreie Universität BerlinGermany
  4. 4.Department of Digital and Information EngineeringHankuk University of Foreign StudiesYonginKorea
  5. 5.Geometric Modeling and Scientific Visualization CenterKAUSTThuwalSaudi Arabia

Personalised recommendations