Advertisement

Secure Message Transmission in Asynchronous Directed Graphs

  • Shashank Agrawal
  • Abhinav Mehta
  • Kannan Srinathan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7107)

Abstract

We study the problem of secure message transmission (SMT) in asynchronous directed graphs, where an unbounded Byzantine adversary can corrupt some subset of nodes specified via an adversary structure. We focus on the particular variant (0, δ)-SMT, where the message remains perfectly private, but there is a small chance that the receiver R may not obtain it. This variant can be of two kinds: Monte Carlo - where R may output an incorrect message with small probability; and Las Vegas - where R never outputs an incorrect message. For a Monte Carlo (0, δ)-SMT protocol to exist in an asynchronous directed graph, we show that the minimum connectivity required in the network does not decrease even when privacy of the message being transmitted is not required. In the case of Las Vegas (0, δ)-SMT, we show that the minimum connectivity required matches exactly with the minimum connectivity requirements of the zero-error variant of SMT – (0, 0)-SMT. For a network that meets the minimum connectivity requirements, we provide a protocol efficient in the size of the graph and the adversary structure. We also provide a protocol efficient in the size of the graph for an important family of graphs, when the adversary structure is threshold.

Keywords

directed graph asynchronous network information-theoretic security Byzantine adversary 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, S., Cramer, R., de Haan, R.: Asymptotically Optimal Two-Round Perfectly Secure Message Transmission. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 394–408. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Choudhary, A., Patra, A., Ashwinkumar, B.V., Srinathan, K., Rangan, C.P.: On Minimal Connectivity Requirement for Secure Message Transmission in Asynchronous Networks. In: Garg, V., Wattenhofer, R., Kothapalli, K. (eds.) ICDCN 2009. LNCS, vol. 5408, pp. 148–162. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Desmedt, Y.G., Wang, Y.: Perfectly Secure Message Transmission Revisited. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 502–517. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission. In: Annual IEEE Symposium on Foundations of Computer Science, vol. 1, pp. 36–45 (1990)Google Scholar
  5. 5.
    Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Franklin, M., Yung, M.: Secure Hypergraphs: Privacy from Partial Broadcast. In: Proceedings of 27th Symposium on Theory of Computing (STOC), pp. 36–44. ACM Press, New York (1995)Google Scholar
  7. 7.
    Franklin, M.K., Wright, R.N.: Secure communication in minimal connectivity models. J. Cryptology 13(1), 9–30 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hirt, M., Maurer, U.: Player Simulation and General Adversary Structures in Perfect Multi-party Computation. Journal of Cryptology 13(1), 31–60 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kumar, M., Goundan, P.R., Srinathan, K., Rangan, C.P.: On perfectly secure communication over arbitrary networks. In: Proceedings of the 21st Symposium on Principles of Distributed Computing (PODC), Monterey, California, USA, pp. 193–202. ACM Press (July 2002)Google Scholar
  10. 10.
    Kurosawa, K., Suzuki, K.: Truly efficient 2-round perfectly secure message transmission scheme. IEEE Trans. Inf. Theor. 55(11), 5223–5232 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lamport, L., Shostak, R., Pease, M.: The Byzantine Generals Problem. ACM Transactions on Programming Languages and Systems 4(3), 382–401 (1982)CrossRefzbMATHGoogle Scholar
  12. 12.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)zbMATHGoogle Scholar
  13. 13.
    Mehta, A., Agrawal, S., Srinathan, K.: Brief Announcement: Synchronous las Vegas URMT iff Asynchronous Monte Carlo URMT. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 201–203. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Mehta, A., Agrawal, S., Srinathan, K.: Interplay between (im)perfectness, synchrony and connectivity: The case of probabilistic reliable communication. Cryptology ePrint Archive, Report 2010/392 (2010), http://eprint.iacr.org/
  15. 15.
    Nayak, M., Agrawal, S., Srinathan, K.: Minimal Connectivity for Unconditionally Secure Message Transmission in Synchronous Directed Networks. In: Fehr, S. (ed.) ICITS 2011. LNCS, vol. 6673, pp. 32–51. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Patra, A., Choudhary, A., Rangan, C.P.: Unconditionally Reliable and Secure Message Transmission in Directed Networks Revisited. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 309–326. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Patra, A., Choudhary, A., Rangan, C.P.: On Communication Complexity of Secure Message Transmission in Directed Networks. In: Kant, K., Pemmaraju, S.V., Sivalingam, K.M., Wu, J. (eds.) ICDCN 2010. LNCS, vol. 5935, pp. 42–53. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Patra, A., Choudhary, A., Rangan, C.P.: Constant phase efficient protocols for secure message transmission in directed networks. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Principles of Distributed Computing, PODC 2007, pp. 322–323. ACM, New York (2007)CrossRefGoogle Scholar
  19. 19.
    Patra, A., Choudhary, A., Srinathan, K., Rangan, C.P.: Perfectly Reliable and Secure Communication in Directed Networks Tolerating Mixed Adversary. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 496–498. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In: STOC 1989: Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, pp. 73–85. ACM, New York (1989)CrossRefGoogle Scholar
  21. 21.
    Sayeed, H.M., Abu-Amara, H.: Perfectly secure message transmission in asynchronous networks. In: SPDP 1995: Proceedings of the 7th IEEE Symposium on Parallel and Distributeed Processing, p. 100. IEEE Computer Society, Washington, DC, USA (1995)Google Scholar
  22. 22.
    Shamir, A.: How to Share a Secret. Communications of the ACM 22, 612–613 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Shankar, B., Gopal, P., Srinathan, K., Rangan, C.P.: Unconditionally reliable message transmission in directed networks. In: SODA 2008: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1048–1055. Society for Industrial and Applied Mathematics, Philadelphia (2008)Google Scholar
  24. 24.
    Srinathan, K., Narayanan, A., Rangan, C.P.: Optimal Perfectly Secure Message Transmission. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 545–561. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    Srinathan, K., Raghavendra, P., Rangan, C.P.: On Proactive Perfectly Secure Message Transmission. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 461–473. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Srinathan, K., Rangan, C.P.: Possibility and complexity of probabilistic reliable communications in directed networks. In: Proceedings of 25th ACM Symposium on Principles of Distributed Computing, PODC 2006 (2006)Google Scholar
  27. 27.
    Wang, Y.: Robust key establishment in sensor networks. SIGMOD Rec. 33(1), 14–19 (2004)CrossRefGoogle Scholar
  28. 28.
    Yang, Q., Desmedt, Y.: Cryptanalysis of Secure Message Transmission Protocols with Feedback. In: Kurosawa, K. (ed.) Information Theoretic Security. LNCS, vol. 5973, pp. 159–176. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Shashank Agrawal
    • 1
  • Abhinav Mehta
    • 1
  • Kannan Srinathan
    • 1
  1. 1.Center for Security, Theory and Algorithmic Research (C-STAR)International Institute of Information TechnologyHyderabadIndia

Personalised recommendations