Populations of Excited Parabolic States of Hydrogen Beam in Fusion Plasmas

  • O. Marchuk
  • Yu. Ralchenko
Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 68)

Abstract

The injection of a neutral beam into the core of magnetically confined plasmas is a foundation for various plasma diagnostics, including charge-exchange recombination spectroscopy, beam emission spectroscopy, and motional Stark effect diagnostics. We review the current status of statistical and nonstatistical collisional-radiative models used for calculation of populations of hydrogen beam excited states. The recently developed collisional-radiative (CR) model in parabolic states, which utilizes collisional data calculated in the Glauber approximation, is discussed in detail. CR simulations with this model show nonstatistical emission for the σ and π components of the HαStark multiplet and provide m-resolved populations. The results of simulations are in excellent agreement with the systematic motional Stark effect (MSE) measurements from the JET tokamak.

Keywords

Beam Atom Local Thermodynamic Equilibrium Principal Quantum Number Spherical State Neutral Beam Injection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

O.M is thankful to the members of Atomic Spectroscopy Group at NIST for their hospitality. Work of Yu.R. supported in part by the Office of the Fusion Energy Sciences of the US Department of Energy.

References

  1. 1.
    R. Hemsworth et al., Nucl. Fusion 49, 045006 (2009)Google Scholar
  2. 2.
    A. Malaquias et al., Rev. Sci. Instrum. 75, 3393 (2004)Google Scholar
  3. 3.
    R.C. Isler, Phys. Rev. Lett. 38, 1359 (1977)Google Scholar
  4. 4.
    M.G. von Hellermann et al., Rev. Sci. Instrum. T120, 19 (2005)Google Scholar
  5. 5.
    F.M. Levinton et al., Phys. Rev. Lett. 63, 2060 (1989)Google Scholar
  6. 6.
    W. Mandl, R.C. Wolf, M.G. von Hellermann, H.P. Summers, Plasma Phys. Contr. Fusion 35, 1373 (1993)Google Scholar
  7. 7.
    W.W. Heidbrink, K.H. Burrell, Y. Luo, N.A. Pablant, E. Ruskov, Plasma Phys. Contr. Fusion 46, 1 (2004)Google Scholar
  8. 8.
    E. Delabie et al., Rev. Sci. Instrum. 79, 10E552 (2008)Google Scholar
  9. 9.
    L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory(Pergamon, Oxford, 1976), p. 344Google Scholar
  10. 10.
    H.A. Bethe, E.E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms(Plenum, New York, 1977), p. 234Google Scholar
  11. 11.
    R. Uhlemann, R.S. Hemsworth, G. Wang, H. Euringer, Rev. Sci. Instrum. 64, 974 (1992)Google Scholar
  12. 12.
    E. Delabie et al., Plasma Phys. Contr. Fusion 52, 125008 (2010)Google Scholar
  13. 13.
    N. Ryde, Atoms and Molecules in Electric Fields(Almqvist Wiksell International, Stockholm, 1976), p. 204Google Scholar
  14. 14.
    M.G. von Hellermann et al., Nucl. Instrum. Phys. Res. A 623, 720 (2010)Google Scholar
  15. 15.
    T.G. Winter, Phys. Rev. A 80, 032701 (2009)Google Scholar
  16. 16.
    D.R. Schultz, M.R. Strayer, J.C. Wells, Phys. Rev. Lett. 82, 3976 (1999)Google Scholar
  17. 17.
    E.Y. Sidky, C.D. Lin, Phys. Rev. A 65, 012711 (2001)Google Scholar
  18. 18.
    N. Toshima, Phys. Rev. A 50, 3940 (1994)Google Scholar
  19. 19.
    D.R. Schultz, T.-G. Lee, S.D. Loch, J. Phys. B: At. Mol. Opt. Phys. 43, 144002 (2010)Google Scholar
  20. 20.
    C.D. Boley, R.K. Janev, D.E. Post, Phys. Rev. Lett. 52, 534 (1984)Google Scholar
  21. 21.
    R.C. Isler, R.E. Olson, Phys. Rev. A 37, 3399 (1988)Google Scholar
  22. 22.
    I.H. Hutchinson, Plasma Phys. Contr. Fusion 44, 71 (2002)Google Scholar
  23. 23.
    H.P. Summers, The ADAS User Manual, version 2.6 (2004), http://adas.phys.strath.ac.uk
  24. 24.
    O. Marchuk et al., Rev. Sci. Instrum. 79, 10F532 (2008)Google Scholar
  25. 25.
    P.D. Fainstein, V.H. Ponce, R.D. Rivarola J. Phys. B: At. Mol. Opt. Phys. 23, 1481 (1990)Google Scholar
  26. 26.
    R.K. Janev, J.J. Smith, Suppl. J. Nucl. Fusion 4(1993)Google Scholar
  27. 27.
    G.H. Olivera, R.D. Rivarola, P.D. Fainstein, Phys. Rev. A 51, 847 (1995)Google Scholar
  28. 28.
    International Atomic Energy Agency, http://www-amdis.iaea.org/ALADDIN/collision.html
  29. 29.
    H.R. Griem, Plasma Spectroscopy(McGraw-Hill Book Company, New York, 1964), p. 150Google Scholar
  30. 30.
    D.H. Sampson, J. Phys. B: At. Mol. Phys. 10, 749 (1977)Google Scholar
  31. 31.
    T. Fujimoto, Plasma Spectroscopy(Clarendon Press, Oxford, 2004), p. 136Google Scholar
  32. 32.
    H.J. Kunze, Introduction to Plasma Spectroscopy(Springer, Berlin, 2009), p. 141Google Scholar
  33. 33.
    E. Luc-Koenig, A. Bachelier, J. Phys B.: Atom. Molec. Phys. 13, 1743 (1980)Google Scholar
  34. 34.
    R.J. Damburg, V.V. Kolosov, J. Phys B.: Atom. Molec. Phys. 9, 3149 (1976)Google Scholar
  35. 35.
    P. Lotte et al., in Proceedings of 29th EPS Conference on Plasma Physics and Control Fusion, http://crppwww.epfl.ch/%7Eduval/O2_01.pdf(2002)
  36. 36.
    R.J. Damburg, V.V. Kolosov, J. Phys B.: Atom. Molec. Phys. 11, 1921 (1978)Google Scholar
  37. 37.
    A. Boileau et al., J. Phys. B: At. Mol. Opt. Phys. 22, L145 (1989)Google Scholar
  38. 38.
    M.F. Gu, C.T. Holcomb, R.J. Jayakuma, S.L. Allen, J. Phys. B: At. Mol. Opt. Phys. 41, 095701 (2008)Google Scholar
  39. 39.
    O. Marchuk et al., J. Phys. B: At. Mol. Opt. Phys. 43, 011002 (2010)Google Scholar
  40. 40.
    V. Franco, B.K. Thomas, Phys. Rev. A 4, 945 (1971)Google Scholar
  41. 41.
    K. Omidvar, At. Data Nucl. Data Tables 28, 215 (1983)Google Scholar
  42. 42.
    V. Fisher, V. Bernshtam, H. Goelten, Y. Maron, Phys. Rev. A 53, 2425 (1996)Google Scholar
  43. 43.
    A.R. Edmonds, Angular Momentum in Quantum Mechanics(Princeton University Press, Princeton, 1957), p. 53Google Scholar
  44. 44.
    P.A. Braun, J. Phys. B: At. Mol. Opt. Phys. 24, 2313 (1991)Google Scholar
  45. 45.
    K. Blum, Density Matrix Theory and Applications(Plenum Press, New York, 1981), p. 77Google Scholar
  46. 46.
    O. Schöller, J.S. Briggs, R.M. Dreizler, J. Phys. B.: At. Mol. Phys. 19, 2505 (1986)Google Scholar
  47. 47.
    M.J. Alguard, C.W. Drake, Phys. Rev. A 8, 27 (1973)Google Scholar
  48. 48.
    J.R. Ashburn et al., Phys. Rev. A 40, 4885 (1989)Google Scholar
  49. 49.
    O. Marchuk et al., Nucl. Instrum. Phys. Res. A 623, 738 (2010)Google Scholar
  50. 50.
    Yu.V. Ralchenko, Y. Maron, Quant. Spectr. Rad. Transf. 71, 609 (2001)Google Scholar
  51. 51.
    N. Toshima, H. Tawara, NIFS Report NIFS-DATA 26, 32 (1995)Google Scholar
  52. 52.
    O. Marchuk, Yu. Ralchenko, D.R. Schultz, Plasma Phys. Contr. Fusion (to be submitted)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • O. Marchuk
    • 1
  • Yu. Ralchenko
    • 2
  1. 1.Institute of Energy and Climate Research, Plasma Physics Forschungszentrum Jülich GmbH, Partner in Trilateral Euregio ClusterJülichGermany
  2. 2.National Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations