Radiation Therapy Using High-Energy Carbon Beams

  • T. Kanai
Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 68)

Abstract

Heavy-ion radiotherapy using high-energy carbon beams has been performed at the National Institute of Radiological Sciences, Japan. The physical frameworks for heavy-ion radiotherapy are established using an understanding of radiation physics. In this chapter, the biophysical and medical physics aspects of heavy-ion radiotherapy are presented. In order to increase the accuracy of heavy-ion radiotherapy, many physical problems should be solved. A calorimeter was developed to measure the absolute dose of the heavy-ion beams. From a comparison of the dosimetry, it was found that the dose indicated by the ionization chamber was underestimated by 3–4%. The clinical results of carbon therapy at heavy-ion medical accelerator in Chiba (HIMAC) are assessed using the linear-quadratic (LQ) model of radiation effect. Development of new scintillation and Rossi counters will allow simultaneous measurement of the radiation dose and quality of heavy-ion beams. Further research is required to provide a comprehensive biophysical model for clinical applications.

Keywords

Bragg Peak Linear Energy Transfer Relative Biological Effectiveness Tumor Control Probability Radiation Quality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Hornsey, Radiology 97, 649 (1970)Google Scholar
  2. 2.
    J.F. Fowler, F. Inst, P.J. Denekamp, A.L. Page, A.C. Begg, Br. J. Radiol. 45, 237 (1972)Google Scholar
  3. 3.
    J.W. Hopewell, W.H. Barnes, M.E.C. Robbins, M. Corp, J.M. Sansom, C.M.A. Young, G. Wiernik, Br. J. Radiol. 63, 760 (1990)Google Scholar
  4. 4.
    R.R. Wilson, Radiology 47, 487 (1946)Google Scholar
  5. 5.
    C.A. Tobias, H.O. Anger, J.H. Lawrence, Am. J. Roentgen. Radiat. Ther. Nucl. Med. 67, 1 (1952)Google Scholar
  6. 6.
    M.C. Pirruccello, C.A. Tobias (eds.), Biological and Medical Research with Accelerated Heavy Ions at the Bevalac, 1977–1980 LBL-11220/UC-48 (1980)Google Scholar
  7. 7.
    E.A. Blakely, F.Q.H. NGO, S.B. Curtis and C.A. Tobias. Advances in Radiat. Biol., 11, 295 (1984)Google Scholar
  8. 8.
    J.R. Castro, M.M. Reimers, Int. J. Radiat. Oncol. Biol. Phys. 14, 711 (1988)Google Scholar
  9. 9.
    T. Kanai, M. Endo, S. Minohara, et al., Int. J. Radiat. Oncol. Biol. Phys. 44, 201 (1999)Google Scholar
  10. 10.
    G. Kraft, Nucl. Instrum. Meth. A 454, 1 (2000)Google Scholar
  11. 11.
    J. Debus, T. Haberer, D. Schultz-Ertner, Strahlenther Onkol. 176, 211 (2000)Google Scholar
  12. 12.
    H. Tsujii, T. Kamada, M. Baba M, H. Tsuji, H. Kato, S. Kato, S. Yamada, S. Yasuda, T. Yanagi, H. Kato, R. Hara, N. Yamamoto, J. Mizoe, New J. Phys. 10, 075009 doi:10.1088/1367-2630/10/7/075009 (2008)Google Scholar
  13. 13.
    S. Minohara, T. Kanai, M. Endo: Int. J. Radiat. Oncol. Biol. Phys. 47, 1097 (2000)Google Scholar
  14. 14.
    T.H. Haberer, W. Becher, D. Schardt, G. Kraft, Nucl. Instrum. Meth. A 330, 296 (1993)Google Scholar
  15. 15.
    T. Furukawa, T. Inaniwa, S. Sato, T. Tomitani, S. Minohara, K. Noda, T. Kanai, Med. Phys. 34, 1085 (2007)Google Scholar
  16. 16.
    E. Rietzel, C. Bert, Med. Phys. 37, 449 (2010)Google Scholar
  17. 17.
    M. Scholz, G. Kraft, Adv. Space Res. 18, 5 (1996)Google Scholar
  18. 18.
    L. Sihver, C.H. Tsao, R. Silverberg, T. Kanai, A.F. Barghouty, Phys. Rev. C 47, 1455 (1993)Google Scholar
  19. 19.
    N. Matsufuji, M. Komori, H. Sasaki et al., Phys. Med. Biol. 50, 3393 (2005)Google Scholar
  20. 20.
    Z. Moliere, Naturforsch 2a, 133 (1947)Google Scholar
  21. 21.
    V.L. Highland, Nucl. Instrum. Meth. 129, 497 (1975)Google Scholar
  22. 22.
    Y. Kusano, T. Kanai, Y. Kase et al., Med. Phys. 34, 193 (2007)Google Scholar
  23. 23.
    Y. Kusano, T. Kanai et al., Med. Phys. 34, 4016 (2007)Google Scholar
  24. 24.
    H. Nose, Y. Kase, N. Matsufuji, et al., Med. Phys. 36, 870 (2009)Google Scholar
  25. 25.
    T. Inaniwa, T. Furukawa, A. Nagano, S. Sato, N. Saotome, K. Noda, T. Kanai, Med. Phys. 36, 2897 (2009)Google Scholar
  26. 26.
    I. Gudowska, N. Sobolevsky, P. Andreo et al., Phys. Med. Biol. 49, 1933 (2004)Google Scholar
  27. 27.
    A. Fasso, A. Ferrari, J. Ranft et al., Preprint CERN-2005–10 (2005)Google Scholar
  28. 28.
    J. Allison, K. Amako, IEEE Trans. Nucl. Sci. 53, 270 (2006)Google Scholar
  29. 29.
    K. Niita, T. Sato, H. Iwase et al., Rad. Meas. 41, 1080 (2006)Google Scholar
  30. 30.
    International Atomic Energy Agency. Absorbed Dose Determination in External Beam Radiotherapy. Technical Report Series No. 398 (IAEA, Vienna, 2000)Google Scholar
  31. 31.
    A. Fukumura, T. Hiraoka, K. Omata, M. Takeshita, K. Kawachi, K. Kanai, N. Matsufuji, H. Tomura, Y. Futami, Y. Kaizuka, G.H. Hartmann, Phys. Med. Biol. 43, 3459–3463 (1998)Google Scholar
  32. 32.
    G.H. Hartmann, O. Jäkel, P. Heeg, C.P. Karger, A. Kriessbach, Phys. Med. Biol. 44, 1193 (1999)Google Scholar
  33. 33.
    International Commission on Radiation Units and Measurements. Stopping Powers and Ranges for Protons and Alpha Particles. ICRU Report, 49 (Oxford University Press, London, 1993)Google Scholar
  34. 34.
    International Commission on Radiation Units and Measuremets. Stopping of Ions Heavier than Helium. ICRU Report, 73 (Oxford University Press, London, 2005)Google Scholar
  35. 35.
    P. Sigmund, A. Schinner, H. Paul, J. ICRU vol. 49 no. 1 (Oxford University Press, Oxford, 2009)Google Scholar
  36. 36.
    J.F. Ziegler, SRIM - the stopping and range of ions in matter (2008), Available at http://www.srim.org
  37. 37.
    H. Paul, A. Schinner, MSTAR - stopping power for light ions (2004), Available at http://www.exphys.uni-lins.ac.at/stopping
  38. 38.
    P. Andreo, Phys. Med. Biol. 54, N205 (2009)Google Scholar
  39. 39.
    H. Bichsel, T. Hiraoka, Nucl. Instrum. Meth. B 66, 345 (1992)Google Scholar
  40. 40.
    Y. Kumazaki, T. Akagi, T. Yanou, D. Suga, Y. Hishikawa, T. Teshima, Radiat. Meas. 42, 1683 (2007)Google Scholar
  41. 41.
    M. Dingfelder, D. Hantke, M. Inokuti, H.G. Paretzke, Electron inelastic-scattering cross sections in liquid water. Radiat. Phys. Chem. 53, 1 (1998)Google Scholar
  42. 42.
    D. Emfietzoglou, R. Garcia-Molina, I. Kyriakou, I. Abril, H. Nikjoo, Phys. Med. Biol. 54, 3451 (2009)Google Scholar
  43. 43.
    L. Sihver, D. Schart, T. Kanai, Jpn. J. Med. Phys. 18, 1 (1998)Google Scholar
  44. 44.
    H. Paul, Nucl. Instrum. Meth. Phys. Res. B 225, 435 (2007)Google Scholar
  45. 45.
    O. Geithner, P. Andreo, N. Sobolevsky, G. Hartmann, O. Jäkel, Phys. Med. Biol. 51, 2279 (2006)Google Scholar
  46. 46.
    H. Paul, O. Geithner, O. Jäkel, Adv. Quant. Chem. 52, 289 (2007)Google Scholar
  47. 47.
    K. Henkner, N. Bassler, N. Sobolevsky, O. Jäkel, Med. Phys. 36, 1230 (2009)Google Scholar
  48. 48.
    H.J. Brede, K.D. Greif, O. Hecker et al., Phys. Med. Biol. 51, 3667 (2006)Google Scholar
  49. 49.
    M. Sakama, T. Kanai, A. Fukumura, K. Abe, Phys. Med. Biol. 54, 1111 (2008)Google Scholar
  50. 50.
    M. Sudou, T. Kanai, in Test of SEC. Proceedings of the 9th Symposium on Accellerator, Science and Technology (1993), pp. 351–353Google Scholar
  51. 51.
    U. Schneider, E. Pedroni, A. Lomax, Phys. Med. Biol. 41, 111 (1996)Google Scholar
  52. 52.
    N. Matsufuji, H. Tomura, Y. Futami, H. Yamashita, A. Higashi, S. Minohara, M. Endo, T. Kanai, Phys. Med. Biol. 43, 3261 (1998)Google Scholar
  53. 53.
    T. Kanai, Y. Furusawa, K. Fukutsu et al., Radiat. Res. 147, 78 (1997)Google Scholar
  54. 54.
    T. Elsässer, M. Scholz, Radiat. Res. 167, 319 (2007)Google Scholar
  55. 55.
    T. Elsässer, M. Krämer, M. Scholz, Int. J. Radiat. Oncol. Biol. Phys. 71, 866 (2008)Google Scholar
  56. 56.
    T. Kanai, N. Matsufuji, T. Miyamoto et al., Int. J. Radiat. Oncol. Biol. Phys. 64, 650 (2006)Google Scholar
  57. 57.
    J. Llacer, C.A. Tobias, W.R. Holley, T. Kanai, Med. Phys. 11, 266 (1984)Google Scholar
  58. 58.
    I. Schall, D. Schardt, H. Geissel, H. Irnich, E. Kankeleit, G. Kraft, A. Magel, M.F. Mohar, G. Muenzenberg, F. Nickel, C. Scheidenberger, W. Schwab, Nucl. Instrum. Meth. Phys. Res. B 117, 221 (1996)Google Scholar
  59. 59.
    N. Matsufuji, A. Fukumura, M. Komori, T. Kanai, T. Kohno, Phys. Med. Biol. 48, 1605 (2003)Google Scholar
  60. 60.
    Y. Kase, N. Kanematsu, T. Kanai, N. Matsufuji, Phys. Med. Biol. 51, N467 (2006)Google Scholar
  61. 61.
    A.M. Kellerer, H.H. Rossi, Curr. Top. Radiat. Res. Q8, 85 (1972)Google Scholar
  62. 62.
    R.B. Hawkins, Radiat. Res. 140, 366 (1994)Google Scholar
  63. 63.
    Y. Kase, T. Kanai, Y. Matsumoto et al., Radiat. Res. 166, 629 (2006)Google Scholar
  64. 64.
    Y. Kase, T. Kanai, M. Sakama, Y. Tameshige, T. Himukai, H. Nose, N. Matsufuji, Microdosimetric approach to NIRS-defined biological dose measurements for carbon-ion treatment beam. J. Radiat. Res. 52, 59 (2011)Google Scholar
  65. 65.
    Y. Kase, T. Kanai, N. Matsufuji, Y. Furusawa, T. Elsässer, M. Scholz, Phys. Med. Biol. 53, 37 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • T. Kanai
    • 1
  1. 1.Heavy Ion Medical CenterGunma UniversityMaebashiJapan

Personalised recommendations