Advertisement

Improving Parallel Local Search for SAT

  • Alejandro Arbelaez
  • Youssef Hamadi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6683)

Abstract

In this work, our objective is to study the impact of knowledge sharing on the performance of portfolio-based parallel local search algorithms. Our work is motivated by the demonstrated importance of clause-sharing in the performance of complete parallel SAT solvers. Unlike complete solvers, state-of-the-art local search algorithms for SAT are not able to generate redundant clauses during their execution. In our settings, each member of the portfolio shares its best configuration (i.e., one which minimizes conflicting clauses) in a common structure. At each restart point, instead of classically generating a random configuration to start with, each algorithm aggregates the shared knowledge to carefully craft a new starting point. We present several aggregation strategies and evaluate them on a large set of problems.

Keywords

local search SAT solving parallelism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: A Parallel SAT Solver. Journal on Satisfiability, Boolean Modeling and Computation, JSAT 6, 245–262 (2009)zbMATHGoogle Scholar
  2. 2.
    Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an Efficient SAT Solver. In: Proceedings of the 38th Design Automation Conference (DAC 2001), pp. 530–535 (2001)Google Scholar
  3. 3.
    Bordeaux, L., Hamadi, Y., Zhang, L.: Propositional Satisfiability and Constraint Programming: A Comparative Survey. ACM Comput. Surv. 38(4) (2006)Google Scholar
  4. 4.
    Hoos, H.H., Stützle, T.: Local Search Algorithms for SAT: An Empirical Evaluation. J. Autom. Reasoning 24(4), 421–481 (2000)CrossRefzbMATHGoogle Scholar
  5. 5.
    Selman, B., Levesque, H.J., Mitchell, D.G.: A New Method for Solving Hard Satisfiability Problems. In: AAAI (ed.), pp. 440–446 (1992)Google Scholar
  6. 6.
    Selman, B., Kautz, H.A., Cohen, B.: Noise Strategies for Improving Local Search. In: AAAI, pp. 337–343 (1994)Google Scholar
  7. 7.
    McAllester, D.A., Selman, B., Kautz, H.A.: Evidence for Invariants in Local Search. In: AAAI/IAAI, pp. 321–326 (1997)Google Scholar
  8. 8.
    Li, C.M., Huang, W.Q.: Diversification and Determinism in Local Search for Satisfiability. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 158–172. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Hutter, F., Tompkins, D.A.D., Hoos, H.H.: Scaling and Probabilistic Smoothing: Efficient Dynamic Local Search for SAT. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 233–248. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Thornton, J., Pham, D.N., Bain, S., Ferreira Jr, V.: Additive versus Multiplicative Clause Weighting for SAT. In: McGuinness, D.L., Ferguson, G. (eds.) AAAI, pp. 191–196. AAAI Press/The MIT Press, San Jose, California, USA (2004)Google Scholar
  11. 11.
    Hoos, H.H.: An Adaptive Noise Mechanism for WalkSAT. In: AAAI/IAAI, pp. 655–660 (2002)Google Scholar
  12. 12.
    Li, C.M., Wei, W., Zhang, H.: Combining Adaptive Noise and Look-Ahead in Local Search. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 121–133. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Chrabakh, W., Wolski, R.: GridSAT: A System for Solving Satisfiability Problems Using a Computational Grid. Parallel Computing 32(9), 660–687 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Zhang, W., Huang, Z., Zhang, J.: Parallel Execution of Stochastic Search Procedures on Reduced SAT Instances. In: Ishizuka, M., Sattar, A. (eds.) PRICAI 2002. LNCS (LNAI), vol. 2417, pp. 108–117. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Roli, A.: Criticality and Parallelism in Structured SAT Instances. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 714–719. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Roli, A., Blesa, M.J., Blum, C.: Random Walk and Parallelism in Local Search. In: Metaheuristic International Conference (MIC 2005), Vienna, Austria (2005)Google Scholar
  17. 17.
    Pham, D.N., Gretton, C.: gNovelty+ (v.2). In: Solver Description, SAT Competition 2009 (2009)Google Scholar
  18. 18.
    Kroc, L., Sabharwal, A., Gomes, C.P., Selman, B.: Integrating Systematic and Local Search Paradigms: A New Strategy for MaxSAT. In: Boutilier, C. (ed.) IJCAI, Pasadena, California, pp. 544–551 (July 2009)Google Scholar
  19. 19.
    Hogg, T., Williams, C.P.: Solving the Really Hard Problems with Cooperative Search. In: AAAI, pp. 231–236 (1993)Google Scholar
  20. 20.
    Silva, D.L., Burke, E.K.: Asynchronous Cooperative Local Search for the Office-Space-Allocation Problem. INFORMS Journal on Computing 19(4), 575–587 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Selman, B., Kautz, H.A.: Domain-Independent Extensions to GSAT: Solving Large Structured Satisfiability Problems. In: IJCAI, pp. 290–295 (1993)Google Scholar
  22. 22.
    Tompkins, D.A.D., Hoos, H.H.: UBCSAT: An Implementation and Experimentation Environment for SLS Algorithms for SAT and MAX-SAT. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 306–320. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Hutter, F., Hoos, H.H., Leyton-Brown, K.: Tradeoffs in the Empirical Evaluation of Competing Algorithm Designs. Annals of Mathematics and Artificial Intelligence (AMAI), Special Issue on Learning and Intelligent Optimization (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alejandro Arbelaez
    • 1
  • Youssef Hamadi
    • 2
    • 3
  1. 1.Microsoft-INRIA joint-labOrsayFrance
  2. 2.Microsoft ResearchCambridgeUnited Kingdom
  3. 3.LIX École PolytechniquePalaiseauFrance

Personalised recommendations