Advertisement

Multi-Objective Differential Evolution with Adaptive Control of Parameters and Operators

  • Ke Li
  • Álvaro Fialho
  • Sam Kwong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6683)

Abstract

Differential Evolution (DE) is a simple yet powerful evolutionary algorithm, whose performance highly depends on the setting of some parameters. In this paper, we propose an adaptive DE algorithm for multi-objective optimization problems. Firstly, a novel tree neighborhood density estimator is proposed to enforce a higher spread between the non-dominated solutions, while the Pareto dominance strength is used to promote a higher convergence to the Pareto front. These two metrics are then used by an original replacement mechanism based on a three-step comparison procedure; and also to port two existing adaptive mechanisms to the multi-objective domain, one being used for the autonomous selection of the operators, and the other for the adaptive control of DE parameters CR and F. Experimental results confirm the superior performance of the proposed algorithm, referred to as Adap-MODE, when compared to two state-of-the-art baseline approaches, and to its static and partially-adaptive variants.

Keywords

Multi-Objective Optimization Differential Evolution Tree Neighborhood Density Parameter Control Adaptive Operator Selection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10, 646–657 (2006)CrossRefGoogle Scholar
  2. 2.
    Das, S., Suganthan, P.N.: Differential evolution – a survey of the state-of-the-art. IEEE Trans. Evol. Comput. (in press)Google Scholar
  3. 3.
    Davis, L.: Adapting operator probabilities in genetic algorithms. In: Proc. ICGA, pp. 61–69 (1989)Google Scholar
  4. 4.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)CrossRefGoogle Scholar
  5. 5.
    Deb, K., Thiele, L., Laummans, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., et al. (eds.) Evolutionary Multiobjective Optimization, pp. 105–145. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Trans. Evol. Comput. 3, 124–141 (1999)CrossRefGoogle Scholar
  7. 7.
    Fialho, Á., Ros, R., Schoenauer, M., Sebag, M.: Comparison-based adaptive strategy selection with bandits in differential evolution. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G., et al. (eds.) PPSN XI. LNCS, vol. 6238, pp. 194–203. Springer, Heidelberg (2010)Google Scholar
  8. 8.
    Fialho, Á., Da Costa, L., Schoenauer, M., Sebag, M.: Extreme value based adaptive operator selection. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 175–184. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Gong, W., Fialho, A., Cai, Z.: Adaptive strategy selection in differential evolution. In: Branke, J., et al. (eds.) Proc. GECCO. ACM, New York (2010)Google Scholar
  10. 10.
    Huang, V.L., Zhao, S.Z., Mallipeddi, R., Suganthan, P.N.: Multi-objective optimization using self-adaptive differential evolution algorithm. In: Proc. CEC, pp. 190–194. IEEE, Los Alamitos (2009)Google Scholar
  11. 11.
    Jia, L., Gong, W., Wu, H.: An improved self-adaptive control parameter of differential evolution for global optimization. In: Cai, Z., Li, Z., Kang, Z., Liu, Y. (eds.) Computational Intelligence and Intelligent Systems. CCIS, vol. 51, pp. 215–224. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Kukkonen, S., Lampinen, J.: GDE3: The third evolution step of generalized differential evolution. In: Proc. CEC, pp. 443–450. IEEE, Los Alamitos (2005)Google Scholar
  13. 13.
    Li, M., Zheng, J., Xiao, G.: Uniformity assessment for evolutionary multi-objective optimization. In: Proc. CEC, pp. 625–632. IEEE, Los Alamitos (2008)Google Scholar
  14. 14.
    Maturana, J., Lardeux, F., Saubion, F.: Autonomous operator management for evolutionary algorithms. J. Heuristics (2010)Google Scholar
  15. 15.
    Price, K.V.: An introduction to differential evolution. In: Corne, D., et al. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill, New York (1999)Google Scholar
  16. 16.
    Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13, 398–417 (2009)CrossRefGoogle Scholar
  17. 17.
    Robič, T., Filipič, B.: DEMO: Differential evolution for multiobjective optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 520–533. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Thierens, D.: An adaptive pursuit strategy for allocating operator probabilities. In: Beyer, H.-G., et al. (eds.) Proc. GECCO, pp. 1539–1546. ACM, New York (2005)Google Scholar
  19. 19.
    Whitacre, J., Pham, T., Sarker, R.: Use of statistical outlier detection method in adaptive evolutionary algorithms. In: Proc. GECCO, pp. 1345–1352. ACM, New York (2006)Google Scholar
  20. 20.
    Zhang, J., Sanderson, A.C.: Self-adaptive multi-objective differential evolution with direction information provided by archived inferior solutions. In: Proc. CEC, pp. 2806–2815. IEEE, Los Alamitos (2008)Google Scholar
  21. 21.
    Zhang, J., Sanderson, A.C.: JADE: Adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13, 945–958 (2009)CrossRefGoogle Scholar
  22. 22.
    Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evol. Comput. 8, 173–195 (2000)CrossRefGoogle Scholar
  23. 23.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglou, K.C., et al. (eds.) Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems, pp. 95–100. CIMNE (2002)Google Scholar
  24. 24.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3, 257–271 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ke Li
    • 1
  • Álvaro Fialho
    • 2
  • Sam Kwong
    • 1
  1. 1.Department of Computer ScienceCity University of Hong KongHong Kong
  2. 2.LIX, École PolytechniquePalaiseauFrance

Personalised recommendations