Advertisement

Pareto Autonomous Local Search

  • Nadarajen Veerapen
  • Frédéric Saubion
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6683)

Abstract

This paper presents a study for the dynamic selection of operators in a local search process. The main purpose is to propose a generic autonomous local search method which manages operator selection from a set of available operators, built on neighborhood relations and neighbor selection functions, using the concept of Pareto dominance with respect to quality and diversity. The latter is measured using two different metrics. This control method is implemented using the Comet language in order to be easily introduced in various constraint local search algorithms. Focusing on permutation-based problems, experimental results are provided for the QAP and ATSP to assess the method’s effectiveness.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Battiti, R., Brunato, M., Mascia, F.: Reactive Search and Intelligent Optimization. Springer, Heidelberg (2008) (incorporated)zbMATHGoogle Scholar
  2. 2.
    Battiti, R., Tecchiolli, G.: The reactive tabu search. Informs Journal On Computing 6(2), 126–140 (1994)CrossRefzbMATHGoogle Scholar
  3. 3.
    Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB – a quadratic assignment problem library. Journal of Global Optimization 10(4), 391–403 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-Heuristics: an emerging direction in modern search technology. In: Handbook of Metaheuristics, pp. 457–474 (2003)Google Scholar
  5. 5.
    Chiarandini, M., Paquete, L., Preuss, M., Ridge, E.: Experiments on metaheuristics: Methodological overview and open issues. Technical Report DMF-2007-03-003, The Danish Mathematical Society (2007)Google Scholar
  6. 6.
    DaCosta, L., Fialho, Á., Schoenauer, M., Sebag, M.: Adaptive operator selection with dynamic multi-armed bandits. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, pp. 913–920. ACM, Atlanta (2008)CrossRefGoogle Scholar
  7. 7.
    Gutin, G., Punnen, A.P.: The traveling salesman problem and its variations. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  8. 8.
    Hamadi, Y., Monfroy, E., Saubion, F.: What Is Autonomous Search? In: Hybrid Optimization: The Ten Years of CPAIOR. Springer, Heidelberg (2010)Google Scholar
  9. 9.
    Hoos, H., Stützle, T.: Stochastic Local Search: Foundations & Applications. Morgan Kaufmann Publishers Inc., San Francisco (2004)zbMATHGoogle Scholar
  10. 10.
    Hu, B., Raidl, G.R.: Variable neighborhood descent with self-adaptive neighborhood-ordering. In: Proc. of the 7th EU Meeting on Adaptive, Self-Adaptive and Multilevel Metaheuristics (2006)Google Scholar
  11. 11.
    Hussin, M.S., Stützle, T.: Hierarchical iterated local search for the quadratic assignment problem. In: Blesa, M.J., Blum, C., Di Gaspero, L., Roli, A., Sampels, M., Schaerf, A. (eds.) HM 2009. LNCS, vol. 5818, pp. 115–129. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Ingber, L.: Adaptive simulated annealing (ASA): lessons learned. Control and Cybernetics 25, 33–54 (1996)zbMATHGoogle Scholar
  13. 13.
    Linhares, A.: The structure of local search diversity. In: Math 2004: Proceedings of the 5th WSEAS International Conference on Applied Mathematics, pp. 1–5. World Scientific and Engineering Academy and Society (WSEAS), Stevens Point (2004)Google Scholar
  14. 14.
    Linhares, A., Yanasse, H.H.: Search intensity versus search diversity: a false trade off? Applied Intelligence 32(3), 279–291 (2010)CrossRefGoogle Scholar
  15. 15.
    Loiola, E.M., de Abreu, N.M.M., Boaventura-Netto, P.O., Hahn, P., Querido, T.: A survey for the quadratic assignment problem. European Journal of Operational Research 176(2), 657–690 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Maturana, J., Saubion, F.: A compass to guide genetic algorithms. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 256–265. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Maturana, J., Lardeux, F., Saubion, F.: Autonomous operator management for evolutionary algorithms. Journal of Heuristics (2010)Google Scholar
  18. 18.
    Nareyek, A.: Choosing search heuristics by non-stationary reinforcement learning. In: Metaheuristics: Computer Decision-Making, pp. 523–544. Kluwer Academic Publishers, Dordrecht (2004)Google Scholar
  19. 19.
    Reinelt, G.: TSPLIB - a traveling salesman problem library. Informs Journal On Computing 3(4), 376–384 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Robet, J., Lardeux, F., Saubion, F.: Autonomous control approach for local search. In: Stützle, T., Birattari, M., Hoos, H.H. (eds.) SLS 2009. LNCS, vol. 5752, pp. 130–134. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Schiavinotto, T., Stützle, T.: A review of metrics on permutations for search landscape analysis. Comput. Oper. Res. 34(10), 3143–3153 (2007)CrossRefzbMATHGoogle Scholar
  22. 22.
    Sidaner, A., Bailleux, O., Chabrier, J.J.: Measuring the spatial dispersion of evolutionary search processes: Application to walksat. In: Collet, P., Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M. (eds.) EA 2001. LNCS, vol. 2310, pp. 77–90. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  23. 23.
    Sprent, P.: Applied Nonparametric Statistical Methods. Chapman & Hall, London (1989)zbMATHGoogle Scholar
  24. 24.
    Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. The MIT Press, Cambridge (2005)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Nadarajen Veerapen
    • 1
  • Frédéric Saubion
    • 1
  1. 1.LERIAUniversité d’AngersAngersFrance

Personalised recommendations