On the Neutrality of Flowshop Scheduling Fitness Landscapes

  • Marie-Eléonore Marmion
  • Clarisse Dhaenens
  • Laetitia Jourdan
  • Arnaud Liefooghe
  • Sébastien Verel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6683)


Solving efficiently complex problems using metaheuristics, and in particular local search algorithms, requires incorporating knowledge about the problem to solve. In this paper, the permutation flowshop problem is studied. It is well known that in such problems, several solutions may have the same fitness value. As this neutrality property is an important issue, it should be taken into account during the design of search methods. Then, in the context of the permutation flowshop, a deep landscape analysis focused on the neutrality property is driven and propositions on the way to use this neutrality in order to guide the search efficiently are given.


Schedule Problem Local Search Local Optimum Local Search Algorithm Fitness Landscape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stützle, T.: Applying iterated local search to the permutation flow shop problem. Technical Report AIDA-98-04, FG Intellektik, TU Darmstadt (1998)Google Scholar
  2. 2.
    Ruiz, R., Maroto, C.: A comprehensive review and evaluation of permutation flowshop heuristics. European Journal of Operational Research 165(2), 479–494 (2005)CrossRefzbMATHGoogle Scholar
  3. 3.
    Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. European Journal of Operational Research 177(3), 2033–2049 (2007)CrossRefzbMATHGoogle Scholar
  4. 4.
    Nawaz, M., Enscore, E., Ham, I.: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 11(1), 91–95 (1983)CrossRefGoogle Scholar
  5. 5.
    Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics 5, 287–326 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Johnson, S.M.: Optimal two- and three-stage production schedules with setup times included. Naval Research Logistics Quarterly 1, 61–68 (1954)CrossRefzbMATHGoogle Scholar
  7. 7.
    Lenstra, J.K., Rinnooy Kan, A.H.G., Brucker, P.: Complexity of machine scheduling problems. Annals of Discrete Mathematics 1, 343–362 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Taillard, E.: Benchmarks for basic scheduling problems. European Journal of Operational Research 64, 278–285 (1993)CrossRefzbMATHGoogle Scholar
  9. 9.
    Wright, S.: The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Jones, D. (ed.) Proceedings of the Sixth International Congress on Genetics, vol. 1 (1932)Google Scholar
  10. 10.
    Van Nimwegen, E., Crutchfield, J., Huynen, M.: Neutral evolution of mutational robustness. Proc. Nat. Acad. Sci. USA 96, 9716–9720 (1999)CrossRefGoogle Scholar
  11. 11.
    Wilke, C.O.: Adaptative evolution on neutral networks. Bull. Math. Biol. 63, 715–730 (2001)CrossRefzbMATHGoogle Scholar
  12. 12.
    Vérel, S., Collard, P., Tomassini, M., Vanneschi, L.: Fitness landscape of the cellular automata majority problem: view from the “Olympus”. Theor. Comp. Sci. 378, 54–77 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Bastolla, U., Porto, M., Roman, H.E., Vendruscolo, M.: Statiscal properties of neutral evolution. Journal Molecular Evolution 57(S), 103–119 (2003)CrossRefGoogle Scholar
  14. 14.
    Weinberger, E.D.: Correlated and uncorrelatated fitness landscapes and how to tell the difference. Biological Cybernetics 63, 325–336 (1990)CrossRefzbMATHGoogle Scholar
  15. 15.
    Altenberg, L.: The evolution of evolvability in genetic programming. In: Kinnear Jr., K.E. (ed.) Advances in Genetic Programming, pp. 47–74. MIT Press, Cambridge (1994)Google Scholar
  16. 16.
    Verel, S., Collard, P., Clergue, M.: Measuring the Evolvability Landscape to study Neutrality. In: Keijzer, M., et al. (eds.) Poster at Genetic and Evolutionary Computation – GECCO 2006, pp. 613–614. ACM Press, Seattle (2006)Google Scholar
  17. 17.
    Verel, S., Collard, P., Clergue, M.: Scuba Search: when selection meets innovation. In: Evolutionary Computation, CEC 2004, pp. 924–931. IEEE Press, Portland (2004)Google Scholar
  18. 18.
    Marmion, M.E., Dhaenens, C., Jourdan, L., Liefooghe, A., Verel, S.: NILS: a neutrality-based iterated local search and its application to flowshop scheduling. In: 11th European Conference on Evolutionary Computation in Combinatorial Optimisation (EvoCOP11). LNCS, Springer, Heidelberg (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Marie-Eléonore Marmion
    • 1
    • 2
  • Clarisse Dhaenens
    • 1
    • 2
  • Laetitia Jourdan
    • 1
  • Arnaud Liefooghe
    • 1
    • 2
  • Sébastien Verel
    • 1
    • 3
  1. 1.INRIA Lille-Nord EuropeFrance
  2. 2.LIFL – CNRSUniversité Lille 1France
  3. 3.CNRSUniversity of Nice Sophia AntipolisFrance

Personalised recommendations