Development of a Virtual Humanoid Model Using the Denavit-Hartenberg Parameters as a Base for Visual Feedback Applications

  • Davinia Font
  • Tomàs Pallejà
  • Mercè Teixidó
  • Marcel Tresanchez
  • Jordi Palacín
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 122)

Abstract

In this paper a virtual humanoid model based on the Denavit-Hantenberg (DH) parameters is described and proposed as a base for the development of future visual feedback applications to estimate human position, pose or motion. The virtual humanoid can replicate human body poses, has the center of the coordinate system located on the pelvis, and the stand up is the reference or zero pose. The position and orientation of the humanoid body links are determined according the DH frame conventions and the image of the model can be used in additional visual feedback applications.

Keywords

Denavit-Hartenberg parameters humanoid robot virtual model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding 104, 90–126 (2006)CrossRefGoogle Scholar
  2. 2.
    Poppe, R.: Vision-based human motion analysis: An overview. Computer Vision and Image Understanding 108, 4–18 (2007)CrossRefGoogle Scholar
  3. 3.
    Ferrari, V., Marín-Jimenez, M., Zisserman, A.: Progressive Search Space Reduction for Human Pose Estimation. In: IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, pp. 1–8 (2008)Google Scholar
  4. 4.
    Ferrari, V., Marín-Jimenez, M., Zisserman, A.: Pose Search: Retrieving People using Their Pose. In: IEEE Conference on Computer Vision and Pattern Recognition, Miami, pp. 1–8 (2009)Google Scholar
  5. 5.
    Kian, C., Lim, C.K., Luo, Z., Chen, I.-M., Yeo, S.H.: Wearable wireless sensing system for capturing human arm motion. Sensors and Actuators 166, 125–132 (2011)CrossRefGoogle Scholar
  6. 6.
    Grest, D., Woetzel, J., Koch, R.: Nonlinear body pose estimation from depth images. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 285–292. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Knoop, S., Vacek, S., Dillmann, R.: Sensor fusion for 3D human body tracking with an articulated 3D body model. In: Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, pp. 1686–1691 (2006)Google Scholar
  8. 8.
    Plagemann, C., Ganapathi, V., Koller, D., Thrun, S.: Real-time identification and localization of body parts from depth images. In: IEEE International Conference on Robotics and Automation, Anchorage, pp. 3108–3113 (2010)Google Scholar
  9. 9.
    Hilton, A., Beresford, D., Gentils, T., Smith, R., Sun, W.: Virtual People: Capturing human models to populate virtual worlds. In: Proceedings of the Computer Animation, Washington, pp. 174–185 (1999)Google Scholar
  10. 10.
    Shin, S.Y., Kim, C.: On-line Human Motion Transition and Control for Humanoid Upper Body Manipulation. In: IEEE International Conference on Intelligent Robots and Systems, Taiwan, pp. 477–482 (2010)Google Scholar
  11. 11.
    Denavit, J., Hartenberg, R.S.: A Kinematic Notation for Lower Pair Mechanisms based on Matrices. Trans ASME J. Appl. Mech. 23, 215–221 (1955)MathSciNetGoogle Scholar
  12. 12.
    Carbone, G., Lim, H., Takanishi, A., Ceccarelli, M.: Stiffness Analysis of the Humanoid Robot WABIAN-RIV: Modelling. In: IEEE International Conference on Robotics & Automation, Taiwan, pp. 3654–3659 (2003)Google Scholar
  13. 13.
    Ali, M.A., Park, H.A., George Lee, C.S.: Closed-Form Inverse Kinematic Joint Solution for Humanoid Robots. In: International Conference on Intelligent Robots and Systems, Taiwan, pp. 704–709 (2010)Google Scholar
  14. 14.
    Choi, Y., Kim, D., Oh, Y., You, B.-J.: Posture/Walking Control for Humanoid Robot Based on Kinematic Resolution of CoM Jacobian With Embedded Motion. IEEE Transactions on Robotics 6, 1285–1293 (2007)CrossRefGoogle Scholar
  15. 15.
    Lee, S., Park, S., Kim, M., Lee, C.-W.: Design of a Force Reflecting Master Arm and Master Hand using Pneumatic Actuators. In: IEEE International Conference on Robotics & Automation, Belgium, pp. 2574–2579 (1998)Google Scholar
  16. 16.
    Palleja, T., Teixido, M., Tresanchez, M., Palacin, J.: Measuring Gait Using a Ground Laser Range Sensor. Sensors 9, 9133–9146 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Davinia Font
    • 1
  • Tomàs Pallejà
    • 1
  • Mercè Teixidó
    • 1
  • Marcel Tresanchez
    • 1
  • Jordi Palacín
    • 1
  1. 1.Department of Computer Science and Industrial EngineeringUniversity of LleidaLleidaSpain

Personalised recommendations