Functional MRI of Neural Plasticity and Drug Effect in the Brain

Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 120)

Abstract

Recent advances in magnetic resonance imaging (MRI) have opened up new perspectives for understanding brain function and its plasticity after damage or even in the process of learning and memory. Using functional MRI (fMRI), reorganization of the cortical representation can be detected after the peripheral nerves deafferentation or digit amputation. To detect the more trivial changes during learning and memory, we established two techniques. One is to use manganese as a contrast agent to detect minute reorganization of hippocampal mossy fiber after training with hidden platform in Morris water maze. The other technique detects the synchrony in fMRI signal among neural areas that represents functional connectivity. We demonstrated the spatial memory network can be visualized in water maze trained animal. Furthermore, we showed that synchrony rather than activity in the brain can be modulated by receptor targeted pharmaceuticals, which indicate a different drug mechanism. The translation of these methods will facilitate our understanding of brain plasticity, early diagnosis of dementia, and evaluation of drug efficacy.

Keywords

Functional Connectivity Morris Water Maze Blood Oxygenation Level Dependent Functional Magnetic Resonance Imaging Neural Plasticity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Aoki et al. 2004]
    Aoki, I., Wu, Y.J., Silva, A.C., Lynch, R.M., Koretsky, A.P.: Neuroimage 22, 1046–1059 (2004)CrossRefGoogle Scholar
  2. [Berlucchi et al. 2009]
    Berlucchi, G., Buchtel, H.A.: Exp. Brain Res. 192, 307–319 (2009)CrossRefGoogle Scholar
  3. [Biswal et al. 1995]
    Biswal, B., Yetkin, F.Z., Haughton, V.M., Hyde, J.S.: Magnetic Resonance in Medicine 34, 537–541 (1995)CrossRefGoogle Scholar
  4. [Calabresi et al. 2003]
    Calabresi, P., Centonze, D., Pisani, A., Cupini, L., Bernardi, G.: Lancet Neurol. 2, 622–629 (2003)CrossRefGoogle Scholar
  5. [Calford et al. 2005]
    Calford, M.B., Chino, Y.M., Das, A., Eysel, U.T., Gilbert, C.D., Heinen, S.J., Kaas, J.H., Ullman, S.: Nature 438 (2005); E3, discussion E3-4Google Scholar
  6. [Cusick 1996]
    Cusick, C.G.: Prog. Brain. Res. 108, 379–390 (1996)CrossRefGoogle Scholar
  7. [Chopp et al. 2008]
    Chopp, M., Li, Y., Zhang, J.: J. Neurol. Sci. 265, 97–101 (2008)CrossRefGoogle Scholar
  8. [Chuang et al. 2010]
    Chuang, K.H., Zhang, B.B., Chen, W., Sheu, F.S., Routtenberg, A.: In: 40th Annual Meeting of Society for Neuroscience, San Diego, USA (2010)Google Scholar
  9. [Chuang et al. 2008]
    Chuang, K.H., van Gelderen, P., Merkle, H., Bodurka, J., Ikonomidou, V.N., Koretsky, A.P., Duyn, J.H., Talagala, S.L.: NeuroImage 40, 1595–1605 (2008)CrossRefGoogle Scholar
  10. [Coull et al. 1999]
    Coull, J.T., Buchel, C., Friston, K.J., Frith, C.D.: Neuroimage 10, 705–715 (1999)CrossRefGoogle Scholar
  11. [Damoiseaux et al. 2006]
    Damoiseaux, J.S., Rombouts, S.A.R.B., Barkhof, F., Scheltens, P., Stam, C.J., Smith, S.M., Beckman, C.F.: Proceedings of the National Academy of Sciences 103, 13848–13853 (2006)Google Scholar
  12. [Dawson et al. 1987]
    Dawson, D.R., Killackey, H.P.: J. Comp. Neurol. 256, 246–256 (1987)CrossRefGoogle Scholar
  13. [Devor et al. 1979]
    Devor, M., Schonfeld, D., Seltzer, Z., Wall, P.D.: J. Comp. Neurol. 185, 211–220 (1979)CrossRefGoogle Scholar
  14. [Devor et al. 1981]
    Devor, M., Wall, P.D.: J. Neurosci. 1, 679–684 (1981)Google Scholar
  15. [D’Hooge et al. 2001]
    D’Hooge, R., De Deyn, P.P.: Brain. Res. Brain. Res. Rev. 36, 60–90 (2001)CrossRefGoogle Scholar
  16. [Doyon et al. 2005]
    Doyon, J., Benali, H.: Curr. Opin. Neurobiol. 15, 161–167 (2005)CrossRefGoogle Scholar
  17. [Duffau 2006]
    Duffau, H.: J. Clin. Neurosci. 13, 885–897 (2006)CrossRefGoogle Scholar
  18. [Ekstrom 2010]
    Ekstrom, A.: Brain Res. Rev. 62, 233–244 (2010)CrossRefGoogle Scholar
  19. [Filippini et al. 2009]
    Filippini, N., MacIntosh, B.J., Hough, M.G., Goodwin, G.M., Frisoni, G.B., Smith, S.M., Matthews, P.M., Beckmann, C.F., Mackay, C.E.: Proceedings of the National Academy of Sciences, 7209–7214 (2009)Google Scholar
  20. [Fleisher et al. 2009]
    Fleisher, A.S., Sherzai, A., Taylor, C., Langbaum, J.B.S., Chen, K., Buxton, R.B.: NeuroImage 47, 1678–1690 (2009)CrossRefGoogle Scholar
  21. [Greicus et al. 2003]
    Greicius, M.D., Krasnow, B., Reiss, A.L., Menon, V.: Proceedings of the National Academy of Sciences of the United States of America 100, 253–258 (2003)Google Scholar
  22. [Greicus et al. 2004]
    Greicius, M.D., Srivastava, G., Reiss, A.L., Menon, V.: Proceedings of the National Academy of Sciences of the United States of America 101, 4637–4642 (2004)Google Scholar
  23. [Holahan et al. 2006]
    Holahan, M.R., Rekart, J.L., Sandoval, J., Routtenberg, A.: Hippocampus 16, 560–570 (2006)CrossRefGoogle Scholar
  24. [Honey et al. 2004]
    Honey, G., Bullmore, E.: Trends Pharmacol. Sci. 25, 366–374 (2004)CrossRefGoogle Scholar
  25. [Johansen 2007]
    Johansen-Berg, H.: Curr. Biol. 17, R141–R144 (2007)CrossRefGoogle Scholar
  26. [Lewis et al. 2009]
    Lewis, C.M., Baldassarre, A., Committeri, G., Romani, G.L., Corbetta, M.: Proc. Natl. Acad. Sci. USA 106, 17558–17563 (2009)CrossRefGoogle Scholar
  27. [Logothetis et al. 2004]
    Logothetis, N.K., Wandell, B.A.: Annu. Rev. Physiol. 66, 735–769 (2004)CrossRefGoogle Scholar
  28. [McCandlish et al. 1996]
    McCandlish, C., Li, C., Waters, R., Howard, E.: Exp. Brain Res. 108, 417–426 (1996)CrossRefGoogle Scholar
  29. [Manning 2008]
    Manning, L.: Behav. Brain Res. 192, 143–148 (2008)CrossRefGoogle Scholar
  30. [Nasrallah et al. 2011]
    Nasrallah, F.A., Chen, D.Y., Routtenberg, A., Chuang, K.H.: In: 19th Annual Meeting ISMRM, Montreal, Canada (2011)Google Scholar
  31. [Nasrallah et al. 2010]
    Nasrallah, F.A., Tan, J., Hennies, N., Chuang, K.H.: In: 18th Annual Meeting ISMRM-ESMRMB, Stockholm, Sweden (2010)Google Scholar
  32. [Ogawa et al. 1990]
    Ogawa, S., Lee, T.M., Kay, A.R., Tank, D.W.: Proc. Natl. Acad. Sci. USA 87, 9868–9872 (1990)CrossRefGoogle Scholar
  33. [Ogawa et al. 1998]
    Ogawa, S., Menon, R.S., Kim, S.G., Ugurbil, K.: Annu. Rev. Biophys. Biomol. Struct. 27, 447–474 (1998)CrossRefGoogle Scholar
  34. [Pascual et al. 2005]
    Pascual-Leone, A., Amedi, A., Fregni, F., Merabet, L.B.: Annu. Rev. Neurosci. 28, 377–401 (2005)CrossRefGoogle Scholar
  35. [Pelled et al. 2009]
    Pelled, G., Bergstrom, D.A., Tierney, P.L., Conroy, R.S., Chuang, K.H., Yu, D., Leopold, D.A., Walters, J.R., Koretsky, A.P.: Proc. Natl. Acad. Sci. USA 106, 14114–14119 (2009)CrossRefGoogle Scholar
  36. [Pelled et al. 2007]
    Pelled, G., Chuang, K.H., Dodd, S.J., Koretsky, A.P.: Neuroimage 37, 262–273 (2007)CrossRefGoogle Scholar
  37. [Poldrack 2000]
    Poldrack, R.A.: Neuroimage 12, 1–13 (2000)CrossRefGoogle Scholar
  38. [Pupo et al. 2001]
    Pupo, A., Minneman, K.: CNS spectrums 6, 656–662 (2001)Google Scholar
  39. [Raichle et al. 2001]
    Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., Shulman, G.L.: Proceedings of the National Academy of Sciences of the United States of America 98, 676–682 (2001)Google Scholar
  40. [Ramachandran et al. 1998]
    Ramachandran, V.S., Hirstein, W.: Brain 121(pt 9), 1603–1630 (1998)CrossRefGoogle Scholar
  41. [Rekart et al. 2007]
    Rekart, J.L., Sandoval, C.J., Bermudez-Rattoni, F., Routtenberg, A.: Learn. Mem. 14, 416–421 (2007)CrossRefGoogle Scholar
  42. [Sjoberg et al. 1990]
    Sjoberg, J., Kanje, M.: Brain Res. 529, 79–84 (1990)CrossRefGoogle Scholar
  43. [Steward et al. 2005]
    Steward, C.A., Marsden, C.A., Prior, M.J., Morris, P.G., Shah, Y.B.: Psychopharmacology (Berl) 180, 687–704 (2005)CrossRefGoogle Scholar
  44. [Schwartz et al. 2009]
    Schwarz, A.J., Gozzi, A., Bifone, A.: Neuroimage 47, 302–311 (2009)CrossRefGoogle Scholar
  45. [Ugurbil et al. 2000]
    Ugurbil, K., Adriany, G., Andersen, P., Chen, W., Gruetter, R., Hu, X., Merkle, H., Kim, D.S., Kim, S.G., Strupp, J., Zhu, X.H., Ogawa, S.: Annu. Rev. Biomed. Eng. 2, 633–660 (2000)CrossRefGoogle Scholar
  46. [van der Linden et al. 2009]
    Van der Linden, A., Van Meir, V., Boumans, T., Poirier, C., Balthazart, J.: Trends Neurosci. 32, 257–266 (2009)CrossRefGoogle Scholar
  47. [Vincent et al. 2006]
    Vincent, J.L., Snyder, A.Z., Fox, M.D., Shannon, B.J., Andrews, J.R., Raichle, M.E., Buckner, R.L.: J. Neurophysiol. 96, 3517–3531 (2006)CrossRefGoogle Scholar
  48. [Voss et al. 2009]
    Voss, H.U., Schiff, N.D.: Prog. Brain Res. 175, 483–496 (2009)CrossRefGoogle Scholar
  49. [Wall et al. 1984]
    Wall, J.T., Cusick, C.G.: J Neurosci. 4, 1499–1515 (1984)Google Scholar
  50. [Waltres et al. 1995]
    Watres, R., Li, C., McCandlish, C.: Exp. Brain Res. 103, 183–197 (1995)Google Scholar
  51. [Ward 2005]
    Ward, N.S.: Prog. Brain Res. 150, 527–535 (2005)CrossRefGoogle Scholar
  52. [Welker 1976]
    Welker, C.: J. Comp. Neurol. 166, 173–189 (1976)CrossRefGoogle Scholar
  53. [Weng et al. 2011]
    Weng, J.C., Chuang, K.H., Goloshevsky, A., Dodd, S.J., Sharer, K.: Neuroimage 54, 1122–1129 (2011)CrossRefGoogle Scholar
  54. [Woolsey et al. 1970]
    Woolsey, T.A., Van der Loos, H.: Brain Res. 17, 205–242 (1970)CrossRefGoogle Scholar
  55. [Wu et al. 2009]
    Wu, C.W., Gu, H., Lu, H., Stein, E.A., Chen, J.H., Yang, Y.: NeuroImage 45, 694–701 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Laboratory of Molecular Imaging, Singapore Bioimaging ConsortiumAgency for Science Technology and ResearchSingaporeSingapore
  2. 2.Clinical Imaging Research CentreNational University of SingaporeSingaporeSingapore
  3. 3.Department of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore

Personalised recommendations