Self-correctors for Cryptographic Modules

  • Go Yamamoto
  • Tetsutaro Kobayashi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7089)

Abstract

A self-corrector for a function f is an efficient machine that computes f correctly using any untrusted black-box that computes f correctly only with a certain probability. The design of self-correctors for non-verifiable functions, typically decryption functions of public-key cryptographies, was investigated. We present a design method for self-correctors that works even when the black-box returns correct output with probability of less than 1/2. For a practical demonstration of the method, we also present examples of self-correctors for the decryption functions of public-key cryptosystems, such as the ElGamal, the Pailler, and the GHV cryptosystems, and for hidden pairings with trapdoors.

Keywords

Smart Card Success Probability Turing Machine Stable Class Decryption Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof Verification and Intractability of Approximation Problems. Journal of the ACM 45, 501–555 (1992); Preliminary version in FOCS 1992CrossRefMATHGoogle Scholar
  2. 2.
    Arora, S., Safra, S.: Probabilistic Checkable Proofs: A New Characterization of NP. Journal of the ACM 45, 70–122 (1992); Preliminary version in FOCS 1992CrossRefMATHGoogle Scholar
  3. 3.
    Arora, S., Sudan, M.: Improved low degree testing and its applications. In: STOC 1997, pp. 485–495 (1997)Google Scholar
  4. 4.
    Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications. In: STOC 1988, pp. 103–112 (1988)Google Scholar
  5. 5.
    Blum, M., Luby, M., Rubinfeld, R.: Self-Testing/Correcting with Applications to Numerical Problems. In: STOC 1990, pp. 73–83 (1990)Google Scholar
  6. 6.
    Dent, A.W., Galbraith, S.D.: Hidden Pairings and Trapdoor DDH Groups. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 436–451. Springer, Heidelberg (2006)Google Scholar
  7. 7.
    Feigenbaum, J., Fortnow, L., Laplante, S., Naik, A.V.: On Coherence, Random-self-reducibility, and Self-correction. Computational Complexity 7(2), 174–191 (1998)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Gemmell, P., Lipton, R., Rubinfeld, R., Sudan, M., Wigderson, A.: Self-testing/correcting for polynomials and for approximate functions. In: STOC 1991, pp. 32–42 (1991)Google Scholar
  9. 9.
    Gentry, C., Halevi, S., Vaikuntanathan, V.: A Simple BGN-Type Cryptosystem from LWE. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 506–522. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Goldreich, O., Levin, L.: A Hard-Core Predicate for all One-Way Functions. In: STOC 1989, pp. 25–32 (1989)Google Scholar
  11. 11.
    Hohenberger, S., Lysyanskaya, A.: How to Securely Outsource Cryptographic Computations. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 264–282. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Lenstra Jr., H.W.: Factroing Integers with Elliptic Curves. Ann. Math. 126, 649–673 (1987)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Maurer, U.M., Wolf, S.: The Relationship Between Breaking the Diffie-Hellman Protocol and Computing Discrete Logarithms. SIAM Journal of Computing 28, 1689–1721 (1999)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Raz, R., Safra, S.: A subconstant error-probability low-degree test, and a subconstant error-probability PCP characterization of NP. In: STOC 1997, pp. 475–484 (1997)Google Scholar
  16. 16.
    Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applications to program testing. SIAM Journal of Computing 25(2), 252–271 (1992); Preliminary version in SODA 1992CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Shoup, V.: Lower Bounds for Discrete Logarithms and Related Problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Go Yamamoto
    • 1
  • Tetsutaro Kobayashi
    • 1
  1. 1.NTT Information Sharing Platform LaboratoriesJapan

Personalised recommendations