Advertisement

Breaking an Identity-Based Encryption Scheme Based on DHIES

  • Martin R. Albrecht
  • Kenneth G. Paterson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7089)

Abstract

We present collusion attacks against a recently proposed IBE scheme of Chen et al. from ASIACCS 2010. The attacks recover the master secret key of the scheme and thereby invalidate the existing security analysis of this scheme. The attacks are flexible, allowing, for example, the amount of computation needed to be traded-off against the size of the collusion.

Keywords

identity-based encryption cryptanalysis Gröbner bases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Spencer, J.H.: The probabilistic method. John Wiley & Sons (1992)Google Scholar
  2. 2.
    Ars, G., Faugère, J.-C., Imai, H., Kawazoe, M., Sugita, M.: Comparison Between XL and Gröbner Basis Algorithms. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 338–353. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Bardet, M., Faugère, J., Salvy, B.: On the complexity of Gröbner basis computation of semi-regular overdetermined algebraic equations. In: Proceedings of the International Conference on Polynomial System Solving, pp. 71–74 (2004)Google Scholar
  4. 4.
    Bosma, W., Cannon, J., Playoust, C.: The MAGMA Algebra System I: The User Language. Journal of Symbolic Computation 24, 235–265 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Chen, Y., Charlemagne, M., Guan, Z., Hu, J., Chen, Z.: Identity-based encryption based on DHIES. In: Feng, D., Basin, D.A., Liu, P. (eds.) Proceedings of the 5th ACM Symposium on Information, Computer and Communications Security, ASIACCS 2010, pp. 82–88. ACM (2010)Google Scholar
  6. 6.
    Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 3rd edn. Springer, Heidelberg (2007)CrossRefzbMATHGoogle Scholar
  7. 7.
    Faugère, J.-C.: A New Efficient Algorithm for Computing Gröbner Bases (F4). Journal of Pure and Applied Algebra 139(1-3), 61–88 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Faugère, J.-C.: A New Efficient Algorithm for Computing Gröbner Bases without Reduction to Zero (F5). In: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, pp. 75–83. ACM (2002)Google Scholar
  9. 9.
    Lazard, D.: Gröbner-Bases, Gaussian Elimination and Resolution of Systems of Algebraic Equations. In: van Hulzen, J.A. (ed.) ISSAC 1983 and EUROCAL 1983. LNCS, vol. 162, pp. 146–156. Springer, Heidelberg (1983)CrossRefGoogle Scholar
  10. 10.
    Susilo, W., Baek, J.: On the Security of the Identity-based Encryption based on DHIES from ASIACCS 2010 (short paper). In: Proceedings of the 6th ACM Symposium on Information, Computer and Communications Security, ASIACCS 2011. ACM (2011)Google Scholar
  11. 11.
    Stein, W., et al.: Sage Mathematics Software. Version 4.6.0 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Martin R. Albrecht
    • 1
    • 2
  • Kenneth G. Paterson
    • 3
  1. 1.INRIA, Paris-Rocquencourt Center, SALSA Project UPMC Univ Paris 06, UMR 7606, LIP6ParisFrance
  2. 2.CNRS, UMR 7606, LIP6ParisFrance
  3. 3.Information Security Group, Royal HollowayUniversity of LondonFrance

Personalised recommendations