A Global Characterization of Envy-Free Truthful Scheduling of Two Tasks

  • George Christodoulou
  • Annamária Kovács
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7090)

Abstract

We study envy-free and truthful mechanisms for domains with additive valuations, like the ones that arise in scheduling on unrelated machines. We investigate the allocation functions that are both weakly monotone (truthful) and locally efficient (envy-free), in the case of only two tasks, but many players. We show that the only allocation functions that satisfy both conditions are affine minimizers, with strong restrictions on the parameters of the affine minimizer. As a further result, we provide a common payment function, i.e., a single mechanism that is both truthful and envy-free.

For additive combinatorial auctions our approach leads us (only) to a non- affine maximizer similar to the counterexample of Lavi et al. [26]. Thus our result demonstrates the inherent difference between the scheduling and the auctions domain, and inspires new questions related to the classic problem of characterizing truthfulness in additive domains.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Archer, A., Tardos, É.: Truthful mechanisms for one-parameter agents. In: FOCS, pp. 482–491 (2001)Google Scholar
  2. 2.
    Ashlagi, I., Dobzinski, S., Lavi, R.: An optimal lower bound for anonymous scheduling mechanisms. In: EC, pp. 169–176 (2009)Google Scholar
  3. 3.
    Bansal, N., Chen, N., Cherniavsky, N., Rudra, A., Schieber, B., Sviridenko, M.: Dynamic pricing for impatient bidders. ACM Transactions on Alg. 6(2) (2010)Google Scholar
  4. 4.
    Bartal, Y., Gonen, R., Nisan, N.: Incentive compatible multi unit combinatorial auctions. In: TARK, pp. 72–87 (2003)Google Scholar
  5. 5.
    Brams, S., Taylor, D.: Fair division: from cake cutting to dispute resolution. Cambridge University Press (1996)Google Scholar
  6. 6.
    Briest, P.: Uniform Budgets and the Envy-Free Pricing Problem. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 808–819. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Briest, P., Krysta, P., Vöcking, B.: Approximation techniques for utilitarian mechanism design. In: STOC, pp. 39–48 (2005)Google Scholar
  8. 8.
    Chen, N., Ghosh, A., Vassilvitskii, S.: Optimal envy-free pricing with metric substitutability. In: EC, pp. 60–69 (2008)Google Scholar
  9. 9.
    Christodoulou, G., Koutsoupias, E., Vidali, A.: A lower bound for scheduling mechanisms. In: SODA, pp. 1163–1170 (2007)Google Scholar
  10. 10.
    Christodoulou, G., Koutsoupias, E., Vidali, A.: A Characterization of 2-Player Mechanisms for Scheduling. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 297–307. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Christodoulou, G., Kovács, A.: A deterministic truthful ptas for scheduling related machines. In: SODA, pp. 1005–1016 (2010)Google Scholar
  12. 12.
    Clark, E.H.: Multipart pricing of public goods. Public Choice 11, 17–33 (1971)CrossRefGoogle Scholar
  13. 13.
    Cohen, E., Feldman, M., Fiat, A., Kaplan, H., Olonetsky, S.: Envy-free makespan approximation: extended abstract. In: EC, pp. 159–166 (2010)Google Scholar
  14. 14.
    Cohen, E., Feldman, M., Fiat, A., Kaplan, H., Olonetsky, S.: On the interplay between incentive compatibility and envy freeness. CoRR, abs/1003.5328 (2010)Google Scholar
  15. 15.
    Cohen, E., Feldman, M., Fiat, A., Kaplan, H., Olonetsky, S.: Truth and envy in capacitated allocation games. CoRR, abs/1003.5326 (2010)Google Scholar
  16. 16.
    Demaine, E.D., Feige, U., Hajiaghayi, M., Salavatipour, M.R.: Combination can be hard: Approximability of the unique coverage problem. SIAM J. Comp. 38(4), 1464–1483 (2008)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Dobzinski, S., Nisan, N.: Multi-unit auctions: Beyond roberts. In: EC (2011)Google Scholar
  18. 18.
    Dobzinski, S., Sundararajan, M.: On characterizations of truthful mechanisms for combinatorial auctions and scheduling. In: EC, pp. 38–47 (2008)Google Scholar
  19. 19.
    Fleischer, L., Wang, Z.: Lower Bound for Envy-Free and Truthful Makespan Approximation on Related Machines. In: Persiano, G. (ed.) SAGT 2011. LNCS, vol. 6982, pp. 166–177. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Groves, T.: Incentives in teams. Econometrica 41, 617–663 (1973)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Guruswami, V., Hartline, J.D., Karlin, A.R., Kempe, D., Kenyon, C., McSherry, F.: On profit-maximizing envy-free pricing. In: SODA, pp. 1164–1173 (2005)Google Scholar
  22. 22.
    Haake, C.-J., Raith, M.G., Su, F.E.: Bidding for envyfreeness: A procedural approach to n-player fair division problems. Social Choice and Welfare 19 (2002)Google Scholar
  23. 23.
    Kempe, D., Mu’alem, A., Salek, M.: Envy-Free Allocations for Budgeted Bidders. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 537–544. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  24. 24.
    Roberts, K.: The characterization of implementable choice rules. Aggregation and Revelation of Preferences, pp. 321–348 (1979)Google Scholar
  25. 25.
    Koutsoupias, E., Vidali, A.: A Lower Bound of 1+Phi for Truthful Scheduling Mechanisms. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 454–464. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Lavi, R., Mu’alem, A., Nisan, N.: Towards a characterization of truthful combinatorial auctions. In: FOCS, pp. 574–583 (2003)Google Scholar
  27. 27.
    Lavi, R., Swamy, C.: Truthful mechanism design for multi-dimensional scheduling via cycle monotonicity. In: EC (2007)Google Scholar
  28. 28.
    Lehmann, D.J., O’Callaghan, L., Shoham, Y.: Truth revelation in approximately efficient combinatorial auctions. J. ACM 49(5), 577–602 (2002)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Mu’alem, A.: On Multi-Dimensional Envy-Free Mechanisms. In: Rossi, F., Tsoukias, A. (eds.) ADT 2009. LNCS, vol. 5783, pp. 120–131. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  30. 30.
    Myerson, R.B.: Optimal auction design. Math. of Op. Res. 6(1), 58–73 (1981)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory. Cambridge University Press (2007)Google Scholar
  32. 32.
    Nisan, N., Ronen, A.: Algorithmic mechanism design. Games and Economic Behavior 35, 166–196 (2001)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Robertson, J.M., Webb, W.A.: Cake-cutting algorithms: Be fair if you can. A.K. Peters (1998)Google Scholar
  34. 34.
    Rochet, J.-C.: A necessary and sufficient condition for rationalizability in a quasilinear context. Journal of Mathematical Economics 16, 191–200 (1987)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Saks, M.E., Yu, L.: Weak monotonicity suffices for truthfulness on convex domains. In: 6th ACM Conference on Electronic Commerce (EC), pp. 286–293 (2005)Google Scholar
  36. 36.
    Vickrey, W.: Counterspeculation, Auctions and Competitive Sealed Tenders. Journal of Finance, 8–37 (1961)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • George Christodoulou
    • 1
  • Annamária Kovács
    • 2
  1. 1.University of LiverpoolLiverpoolUK
  2. 2.Department of InformaticsGoethe University, Frankfurt M.Germany

Personalised recommendations